

WIENER, Plein & Baus GmbH 1 www.wiener-d.com

VM-USB

User Manual

Rev. 1.4, 30-Aug-05

WIENER, Plein & Baus GmbH 2 www.wiener-d.com

General Remarks

The only purpose of this manual is a description of the product. It must not be interpreted a
declaration of conformity for this product including the product and software.
W-Ie-Ne-R revises this product and manual without notice. Differences of the description in
manual and product are possible.
W-Ie-Ne-R excludes completely any liability for loss of profits, loss of business, loss of use
or data, interrupt of business, or for indirect, special incidental, or consequential damages of
any kind, even if W-Ie-Ne-R has been advises of the possibility of such damages arising
from any defect or error in this manual or product.
Any use of the product which may influence health of human beings requires the express
written permission of W-Ie-Ne-R.
Products mentioned in this manual are mentioned for identification purposes only. Product
names appearing in this manual may or may not be registered trademarks or copyrights of
their respective companies.
No part of this product, including the product and the software may be reproduced,
transmitted, transcribed, stored in a retrieval system, or translated into any language in any
form by any means with the express written permission of W-Ie-Ne-R.

VM-USB and VM-USB are designed by JTEC Instruments.

WIENER, Plein & Baus GmbH 3 www.wiener-d.com

Table of contents:

1 General Description.. 5

1.1 VM-USB Features ... 5
1.2 Read-out Modes .. 6
1.3 VM-USB Front panel.. 6
1.4 Technical Data... 7
1.5 Power Consumption.. 7
1.6 Block diagram ... 8

2 VM-USB and USB driver installation... 9
2.1 Installation for Windows Operating Systems... 9
2.2 Installation for Linux Operating Systems .. 12

3 General Architecture of VM-USB and its User Interface... 13
3.1 Action Register .. 13
3.2 VME Command Stacks .. 13
3.3 VME Command Generator / EASY-VME ... 14
3.4 Internal Register File .. 14

3.4.1 Firmware ID Register ... 15
3.4.2 Global Mode Register ... 15
3.4.3 Data Acquisition Settings Register ... 16
3.4.4 User LED Source Selectors ... 16
3.4.5 User Devices Source Selector... 16
3.4.6 Delay and Gate Generator Registers DGG_A and DGG_B 18
3.4.7 Scaler Registers SLR_A and SCLR_B... 18

4 COMMUNICATING WITH VM-USB... 18
4.1 General structure of Out Packets .. 19
4.2 Writing Data to the Register Block ... 20
4.3 Reading Back Data from the Register Block.. 20
4.4 Writing Data to the VME Command Stacks and to the VME Command
Generator... 20
4.5 Structure of the VME Stack... 21
4.6 Structure of the IN Packets .. 24

5 Guide to List Mode Data Acquisition with VM-USB .. 26
6 LIBXXUSB Library for Windows and Linux.. 27

6.1 xxusb_devices_find ... 27
6.2 xxusb_device_open.. 27
6.3 xxusb_device_close.. 28
6.4 xxusb_reset_toggle .. 28
6.5 xxusb_register_write... 29
6.6 xxusb_register_read.. 29
6.7 xxusb_stack_write... 30
6.8 xxusb_stack_read .. 31

WIENER, Plein & Baus GmbH 4 www.wiener-d.com

6.9 xxusb_stack_execute ... 31
6.10 xxusb_usbfifo_read ... 32
6.11 xxusb_bulk_read ... 33
6.12 xxusb_bulk_write .. 33
6.13 xxusb_flashblock_program .. 34

7 APPENDIX A: Programming and the Use of Flash Memory 36
8 APPENDIX B: Use of Multiplexed User Devices... 38

8.1 Characteristics and the Use of Delay and Gate Generators 38
8.2 Characteristics and the Use of Scalers .. 38

WIENER, Plein & Baus GmbH 5 www.wiener-d.com

1 GENERAL DESCRIPTION

The VM-USB is an intelligent VME master with high speed USB2 interface. Enhanced
functionality is given by the programmable internal FPGA logic which provides a VME
command sequencer with 4kB stack, 4kB event buffer, and 26kB data buffer. Combined
with the 4 front panel I/O ports, this allows VME operation and data acquisition / buffering
without any PC or USB activity, other than reading out suitably formatted data buffers.
The VM-USB can be also programmed to act as a VME slave with respect to a master crate
controller, while performing master operations on other data acquisition modules. For
example, it can be programmed via the VME bus to perform the readout of multiple VME
modules, with data buffering in a 24-kByte FIFO. The master module can then retrieve the
data from the VM-USB alone, at block transfer rates.
All VM-USB logic is controlled by a XC3S400 XILINX Spartan 3 family FPGA. Upon
power-up the FPGA boots from a selected segment (one of four) of flash memory. The
configuration flash memory can be reprogrammed via the USB port, allowing convenient
updates of the firmware. Following an open platform approach, the user can develop his own
FPGA configuration / firmware. The boot sector is selected by setting of a front-panel rotary
switch.

1.1 VM-USB Features
• low-cost 6U single wide VME master with high speed USB2 interface, auto-

selecting USB2 / USB1, LED’s for speed and FPGA failure/reset.
• while operated as a slot-one system controller, performs round-robin and fair bus

arbitration, generates the 16 MHz system clock, and generates BERR response, when
no DTACK appears within 16us from the assertion of data strobes by any controller.

• may be programmed to respond to all 7 interrupt requests IRQ1-7, can generate any
of the 7 interrupts

• 2 multiplexed NIM inputs (with LEMO connectors), with a selection of input signal
functionality including 2 32-bit scalers and 2 delay and gate generators.

• 2 multiplexed NIM outputs (with LEMO connectors), with a selection of source
signals, including the outputs of the 2 delay and gate generators.

• 4 multiplexed LED’s, with a large selection of diagnostic signals.
• Spartan 3 FPGA, XC3S400 based, firmware upgradeable via the USB port from a

host PC.
• built in VME sequencer, 1k x 16 bit VME command stack for use in an autonomous

data acquisition process. Programmable via USB and/or VME, depending on the
active FPGA firmware.

• open architecture, allowing the user to develop his own FPGA configuration.
• readout triggered either via USB link, by VME interrupt or by a start signal applied to

a (programmable) NIM input
• 26-kByte of pipelined data buffer (FIFO) with programmable level of transfer trigger
• low power consumption, only +5V used

WIENER, Plein & Baus GmbH 6 www.wiener-d.com

1.2 Read-out Modes
• Single word transfer D8, D16, D24, D32 with the full selection of bus placement.
• Addressing modes A16, A24, A32
• BLT (with a suitable firmware).
• Autonomous (intelligent) readout pursuant to user-programmed stack. May include

conditional readout controlled by the content of a hit register. May include multiple,
conditional command stacks, action triggered by either USB, VME or external signal

• Highly effective triply-pipelined stack execution, virtually with no band-width
penalty for single (as opposed to block transfer) operations.

• Highly customizable.

1.3 VM-USB Front panel

4 user LED’s

Failure LED / USB 1 or 2 indicator

2 user outputs Lemo / NIM

USB port

2 user inputs Lemo / NIM

Firmware selector (1 – 4) :
P1 – P4 for programming
C1 – C4 for use / operation

WIENER, Plein & Baus GmbH 7 www.wiener-d.com

1.4 Technical Data

Packaging single wide 6U VME module
Interface USB2 / USB1 auto-detecting / ranging,

Connector: USB type B
Inputs 2 user inputs, NIM level , LEMO

Multiplexed functionality (firmware 8504):
Outputs 2 multiplexed outputs for VME, USB and DAQ signals, NIM

level, LEMO
default setting (firmware 7504):
 O-1: busy
 O-2: internal event trigger

Display 4 programmable User LED’s (green,red, green, yellow)
3 USB status LED’s (USB1, USB2, Failure)

VME master modes A16, A24, A32, D8, D16, D24, D32, BLT32
System Controller bus arbiter and / or interrupt handler
Firmware Software upgradeable, 4 firmware locations

Selection via 8 position switch (P=program, C-use)
Performance D32 via USB (EASY-VME): 128 kB/s

D32 with data buffering: 32 MB/s
BLT: 32 MB/s

1.5 Power Consumption

Voltage Max. current Power
+5 V 1.2 A about 8 W

WIENER, Plein & Baus GmbH 8 www.wiener-d.com

1.6 Block diagram

I1 - User NIM input
O1 - User NIM "Busy" output
ACQ - Data Acquisition Control
REG - Register Block
STACKS - VME Command Stacks (2 kBytes)
VME command Gen. - VME command Generator
VME - VME Bus, Including Arbitration
FIFOs - Three-Stage Piplined FIFO Array (22 kBytes)
Master - Control Unit
USB Controller - FX2 CY7C68013 IC
OUT FIFO - USB Out FIFO (Relative to Host)
IN FIFO - USB In FIFO (Relative to Host)

V
M

E
B

us

FIFO
s

O
U

T FIFO

IN
 FIFO

V
M

E
 C

om
m

nd
G

enerator

U
S

B
 C

O
N

TR
O

LLE
R

 REG STACKS ACQ

I1

M
A

S
TE

R

External to
FPGA
FPGA

Data

Control
O

1

R
egister
File U

ser
D

evices

WIENER, Plein & Baus GmbH 9 www.wiener-d.com

2 VM-USB AND USB DRIVER INSTALLATION

ATTENTION!!! Observe precautions for handling:

• Electrostatic device! Handle only at static safe work stations. Do not touch electronic

components or wiring
• The VME crate as well as the used PC have to be on the same electric potential. Different

potentials can result in unexpected currents between the VM-USB and connected computer which
can destroy the units.

• Do not plug the VC-USB into a VME crate under power. Switch off the VME crate first before
inserting or removing any VME module! For safety reasons the crate should be disconnected
from AC mains.

2.1 Installation for Windows Operating Systems

1. Switch off the VME crate and remove the power cord. Plug in the VM-USB on the first left

slot 1 if needed as system controller and secure it with the front panel screw. Switch on the
VME crate.

2. Insert the driver and software CD-ROM into the CD-ROM drive of the computer and run
the setup program in the XXUSBWin_Install folder. Define directory for installation and
click the installation button.

3. Connect the VM-USB via the provided USB cable to a USB port of the computer. Running

Windows 2000 or XP the hardware change should be detected and the “New Hardware
Wizard” Window should open and show the VME USB controller.

4. Do not use the automatic software installation but chose “installation from specific
location”.

WIENER, Plein & Baus GmbH 10 www.wiener-d.com

5. Select manual search for the driver
6. Type in the drive letter for the CD-ROM (e.g. D:, F:, …) and locate the file CC-USB.inf.

Press Enter to select this driver and to close the window.

7. The WIENER VM-USB driver should be listed and highlighted in the driver list. The driver

is not digitally signed which however does not have any effect on it’s functionality. Press
Next to finish the installation.

WIENER, Plein & Baus GmbH 11 www.wiener-d.com

8. The “New Hardware Wizard” should copy all driver files into the Windows System32

folders and report a successful installation.

WIENER, Plein & Baus GmbH 12 www.wiener-d.com

9. Run the XXUSBWin.exe program from the program directory or use one of the sample

programming packages to communicate with the VM-USB.

2.2 Installation for Linux Operating Systems

Linux provides a library libusb that allows to perform the bulk transfer to and from the
VM-USB USB port. The documentation and the library is available from
http://libusb.sourceforge.net. Fortunately, it is also included in modern Linux distributions, as
is the USB2 EHCI driver.

The prerequisites are:
(i) EHCI driver loaded - this is part of newer Linux distributions
(ii) libusb installed - installed automatically with newer Linux distributions.

IMPORTANT NOTE: At the time of this writing, root privileges are needed to use libusb,
when hot-plugging the device. This is needed for being able to write to the usb file system
usbfs. Please execute su before calling the demo program.

WIENER, Plein & Baus GmbH 13 www.wiener-d.com

3 GENERAL ARCHITECTURE OF VM-USB AND ITS USER INTERFACE

The VM-USB presents to the user six types of internal devices identified by primary (PA)
and, if applicable, secondary (SA) addresses, shown in Table 1:

Table 1. Internal devices of VM-USB and their PA and SA addresses

PA SA Device
1 10 Action Register (AR)
2 - Main VME Command Stack (MCS)
3 - Alternate VME Command Stack (ACS)
4 - VME Command Generator (CG)
4 VME Internal Register File
- - Common Output Buffer

3.1 Action Register

The action register is a special-purpose register controlling the mode of operation of VM-
USB and the generation of internal trigger/reset signals. By its design, it can often be
accessed when other VM-USB actions are under way.
Bit 0 of the Action Register is a read/write bit controlling the operating mode of VM-USB
and distinguishing between the interactive and autonomous data acquisition modes. In the
interactive mode, VME commands are performed directly in response to a USB packet
received from the host, while in the data acquisition mode, sequences of VME commands are
executed, pursuant to a list stored in a dedicated VM-USB memory block, upon the receipt
of a trigger signal at the user NIM input I1. When bit 0 of the Action Register is set, VM-
USB is in data acquisition mode, otherwise it is in interactive mode.
Bit 1 of the Action Register is a write-only bit, such that writing “1” to it generates an
internal signal of 150ns duration, called USB Trigger. This signal can be routed to user NIM
outputs O1 or O2, used as an input to multiplexed internal user devices of VM-USB (such as
delay and gate generators and scalers), and/or displayed on user LEDs.
Bit 2 of the Action Register is a writ-only bit, such that writing “1” to it, clears a number of
internal registers. It is intended primarily for use during firmware debugging.

3.2 VME Command Stacks

VME command stacks are used to store suitably coded lists or sequences of VME
Commands to be performed in response to event trigger signals while VM-USB is set to
operate in (autonomous) data acquisition mode of operation. In this mode of operation, VM-
USB issues VME commands, reads the data received in response to them, and buffers the
data in a data buffer. When the buffer (up to 26kB) is full, VM-USB dumps it to the FIFO of
the USB controller IC for the retrieval by the host. It is this data buffering that allows one to
take advantage of the superior band width of the USB2 interface in bulk transfer mode and to
achieve throughputs in excess of 30 Mbytes/s.

WIENER, Plein & Baus GmbH 14 www.wiener-d.com

VM-USB has two dedicated blocks of 16-bit wide memory to accommodate two stacks of
coded VME commands, one for a regular (in response to every event trigger) event readout /
processing and one for an optional periodic execution at a desired frequency (after a
predetermined number of event triggers). The regular or main stack is 768 words deep and
the alternate stack is 256 words deep.
While any arbitrary block of data can be stored in the stack memory and then read back, both
stacks are expected to contain properly encoded sequences of VME operations and their
associated options, such that they can be meaningfully decoded by the VME Command
Generator module and submitted for execution, while VM-USB operates in autonomous data
acquisition mode.

3.3 VME Command Generator / EASY-VME

The VME Command Generator decodes lists of coded VME commands, submits the
commands for execution in VME cycles, and causes the received data, if any, to be stored in
a 4kB event memory (FIFO). At the end of the list (end of an event), the content of the event
FIFO is compiled into the main data buffer (up to 26 kB), for a subsequent transfer to the
USB controller. The VME Command Generator receives coded data either directly from the
host (in interactive or Easy-VME mode), or reads it from the VME Command Stacks (in
autonomous data acquisition mode). The structure of the list is identical in both modes of
operation and is discussed in detail further below. An integral part of the VME command is
the VME address of a target register/memory location. In the context of the discussed VM-
USB architecture, this VME address is a secondary address and its space includes the internal
VME address space of VM-USB, associated with the internal register file of VM-USB.

3.4 Internal Register File

The internal register file of VM-USB shares the primary address (8) with the VME
Command Generator. The secondary addresses (A32 VME addresses) identify various
internal registers of VM-USB. The secondary address identifies in bits 27-31 (A32 mode) the
VM-USB self as a target and must coincide with the settings of the five ID jumpers.

Table 2. Register VME address offsets and their functionality

Offset Register Note
0 Firmware ID 32 bits, Read-only
4 Global Mode 16 bits, Read/Write
8 Data Acquisition Settings 32 bits, Read/Write
12 User LED Source Selector 32 bits, Read/Write
16 User Devices Source Selector 32 bits, Read/Write
20 DGG_A Delay/Gate Settings 32 bits, Read/Write
24 DGG_B Delay/Gate 32 bits, Read/Write
28 Scaler_A 32 bits, Read/Clear/Enable
32 Scaler_B 32 bits, Read/Clear/Enable
36 Number Extract Mask 32 bits, Read/Write

WIENER, Plein & Baus GmbH 15 www.wiener-d.com

The individual registers are then identified by bits A2-A5 (VME D32 data mode) of the
VME address. Note that the access to the internal register file requires A32 addressing and
D32 data modes of VME. The addresses (offsets) of various internal registers are shown in
Table below and the functionality of the registers is discussed further below.

3.4.1 Firmware ID Register
This Firmware ID register identifies the acting FPGA firmware in eight hexadecimal digits
MY000F0R, where M and Y represent the month and year of creation, and F and R represent
the firmware main and revision numbers, respectively.

3.4.2 Global Mode Register
The global mode register has the following 16-bit structure:

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value - BusReq - HeaderOpt - EvtSepOpt - Buf fOpt

The BuffOpt bits (0-3) define the output buffer length. Bit 4 controls the mode of buffer
filling, such that 0 closes buffers at event boundaries and 1 allows spreading events across
the adjacent buffers:

BuffOpt Value Buffer Length (words)
0 13k
1 8k
2 4k
3 2k
4 1k = 1024
5 512
6 256
7 128
8 64
9 Single Event

The EvtSepOpt sets the number of event terminator words (hexadecimal 5555 and AAAA),
such that EvtSepOpt=0/1 cause one/two terminator word/s written at the end of each event.
The HeaderOpt bit controls the structure of the buffer header, such that HeaderOpt=0 writes
out one header word identifying the buffer type (bit 15=1 – watchdog buffer, bit 14=0 – data
buffer, bit 14=1 – scaler buffer) and the number of events in buffer. When HeaderOpt = 1,
the second header word is written out listing the number of words in the buffer.

The BusReq bits identify the VME Bus Request level (0 to 4) to be used by VM-USB, when
not operated as a slot 1 controller (bus arbiter). BusReq=1,2,3, and 4 cause BR0, BR1, BR2,
and BR3 lines to be used, respectively.

WIENER, Plein & Baus GmbH 16 www.wiener-d.com

3.4.3 Data Acquisition Settings Register
The Data Acquisition Settings register stores the desired readout trigger delay and the scaler
readout frequency. The readout trigger delay represents time in microseconds that is allowed
to lapse, counting from the start signal applied to the NIM I1 input, before the stack
execution is started, and is stored in bits 0-7 of the register. The scaler readout frequency
defines the frequency at which scaler stack is to be executed during the data acquisition. The
stored value is equal to the number of data events separating the scaler readout events. When
the value is zero, scaler readout is suppressed. The number is stored in bits 16-31 of the
register.

3.4.4 User LED Source Selectors
Number stored in this register identifies sources of the four user LED’s. The actual selection
of sources is firmware specific and subject to customization. The general bit composition of
the selector word is shown in the table below

LED Unused Bits Latch Bit Invert Bit Code Bits
Top Yellow 5-7 4 3 0-2

Red 13-15 12 11 8-10
Green 21-23 20 19 16-18

Bottom Yellow 29-32 28 27 24-26

The 3-bit code identifies the (one-of-eight) source of the signal. The four first sources may
differ for different LEDs, but the last four are shared among all four LEDs. For firmware
85000402, the sources are as follows:

Code Top Yellow Red Green Bottom Yellow
0 USB OutFIFO Not

Empty
Event Trigg. Acquire Not Slot One

1 USB InFIFO Not
Empty

NIM I1 Stack Not Empty USB Trigger

2 Scaler Event NIM I2 Event Ready USB Reset
3 USB InFIFO Full Busy Event Trigger VME BERR
4 VME DTACK VME DTACK VME DTACK VME DTACK
5 VME BERR VME BERR VME BERR VME BERR
6 VME Bus Request VME Bus Request VME Bus Request VME Bus Request
7 VME Bus Granted VME Bus Granted VME Bus Granted VME Bus Granted

3.4.5 User Devices Source Selector
There are six user devices set up within the FPGA resources of the VM-USB – two NIM
outputs, O1 and O2, two delay and gate generators, DGG_1 and DGG_B, and two 32-bit
scalers, SCLR_A and SCLR_B. All of these devices may use various signals as input/trigger
signals, with the selection identified by respective code bits stored in the User Devices
Source Selector register. Additionally, this register accommodates bits that enable and clear

WIENER, Plein & Baus GmbH 17 www.wiener-d.com

the two scalers. The bit composition of the User Devices source selector register is shown in
the table below.

Device Reset Enable Latch Bit Invert Bit Code
NIM O1 - - 4 3 0-2
NIM O2 - - 12 11 8-10
SCLR_A 19 18 - - 16-17
SCLR_B 23 22 - - 20-21
DGG_A - - - 24-26
DGG_B - - - - 28-30

For the NIM outputs a 3-bit code identifies the (1 of 8) source of the signal. Like for LEDs,
the first four sources may differ for different NIM outputs, but the last four are shared. For
firmware 85000402, the sources are as follows

Code NIM O1 NIM O2
0 Busy USB Trigger
1 Event Trigger Executing VME Command
2 Bus Request VME Address Strobe AS
3 Xfer Event to Data Buffer Xfer Data Buffer to USB FIFO
4 DGG_A DGG_A
5 DGG_B DGG_B
6 End of Event End of Event
7 USB Trigger USB Trigger

Note 1. “Busy” signal indicates that stack processing is in progress, with VME operations not
being completed. “Busy” is asserted when event readout is triggered and deasserted as soon
as VME operations are completed.
Note 2. “Acquire” indicates that the data acquisition mode is active.
Note 3. “USB Trigger” is generated in response to writing to bit 1 of Action Register.
Note 4. “Event Trigger” indicates that event readout has been triggered.
Note 5. Invert bit causes the signal to be inverted
Note 6. Latch bit causes the signal to be latched. To release the latch one must toggle the bit.

The meaning of the input selector codes for scalers and delay and gate generators is shown in
the table below

WIENER, Plein & Baus GmbH 18 www.wiener-d.com

Code SCLR_A SCLR_B DGG_A DGG_B

0 Disabled Disabled Disabled Disabled
1 NIM I1 NIM I1 NIM I1 NIM I1
2 NIM I2 NIM I2 NIM I2 NIM I2
3 Event Event Event Trigger Event Trigger
4 - - End of Event End of Event
5 - - USB Trigger USB Trigger
6 - - - -
7 - - - -

3.4.6 Delay and Gate Generator Registers DGG_A and DGG_B

The two Delay and Gate Generator Registers DGG_A and DGG_B store data defining the
length of the delay and the length of the gate in units of 12.5 ns (80 MHz clock). The value of
the delay is coded in bits 0-16 and the value of the gate, in bits 16-31 of the register word.

16-31 0-15
Gate Delay

3.4.7 Scaler Registers SLR_A and SCLR_B

Scaler registers store 32-bit scaler data in a straightforward manner. The use of the scalers is
described further below.

3.4.8 Number Extract Mask Register

The Number Extract Mask Register stores a logical AND mask that is used to extract a
number from 32-bit VME data. This number is then used to override the block transfer
length, set in bits 24-31 of the first line of the subsequent VME command.

4 COMMUNICATING WITH VM-USB

Communication with the VM-USB consists in writing and reading of buffers of data to/from
the USB2 port of the VM-USB using bulk-transfer mode. Borrowing from the USB
language, the buffers to be written to the VM-USB will be called Out Packets, and they are
sent to pipe 0 of the USB port. The buffers to be read will be called In Packets, and they are
read from pipe 2 of the USB port.
The USB controller IC, when connected to a USB2 port configures packet lengths to 512
bytes. For USB1 (full speed), the packet length is set to 64 bytes. The Out Packets must be
properly formatted to be understood by the internal devices of VM-USB and, by the same
token, the format of the In Packets retrieved from the VM-USB must be understood by the
user in order to be useful.

WIENER, Plein & Baus GmbH 19 www.wiener-d.com

User may send Out Packets to four devices – the Register Block (RB), VME Readout Stacks
(VDS and VSS), and the VME Generator (VGen). User may read In Packets only from the
Common Output Buffer. Reading back data from the RB, VDS, and VSS is achieved by, first
sending a data request Out Packet to these devices and then by reading the In Packet
containing the requested data from the Common Output Buffer.
Writing to the VME Generator constitutes implicitly a request for data, such that in response
to such a writing, VM-USB performs the requested VME operation (including the ones
addressed to internal registers of VM-USB) and returns the VME data in the Common
Output Buffer. Both, In and Out Packets are of a variable length, depending on which
internal address is involved and what the content of the message is.
Important Note:
With some drivers (EZUSB in conjunction with Windows API), read operations from the
USB port are blocking operations, such that the host program will stop executing until the
data are available at the port. Therefore, the host program must make sure (by first requesting
data) that VM-USB has placed data in the Common Output Buffer (physically this is the
FIFO of the USB controller IC), before the read command is issued. VM-USB provides a
mechanism for supplying data, even when the host program is “frozen” in a state of waiting
for data. The mechanism consists in starting a second copy of the program and issuing a bare
request for data command from this second copy, not followed by the read IN Packet
command.
The libxxusb package of VM-USB access functions makes overlapped USB calls that have
preset timeout periods. When no data is available until the end of this period, the I/O is
canceled and the respective function returns error code. The user is then expected to take
proper actions, which may include resubmitting the call.
It is important to specify a sufficiently long In Packet size to be at least of the size of the
actual data buffer available at the Common Output Buffer. This is especially important in the
case of reading VME data buffers which differ in size substantially depending on the
structure of the VME Readout Stack.

4.1 General structure of Out Packets
Since internally, the USB controller of the VM-USB is set up as a 16-bit wide FIFO (First-
In-First-Out Memory), the In and Out Packets are organized as collections of 16-bit words.
For the purpose of the software, and more specifically, of the Windows Application
Programming Interface (API) routines, the data are packed in byte-wide buffers, a process
that may remain transparent to the user when proper set of routines (DLLs) is used. Also,
much of the technical information on writing and reading back data from the internal devices
of the VM-USB may be considered redundant, when a set of routines is available to perform
the task. This information is, however, necessary for writing such routines.
First (16-bit) word in an Out Packet identifies the internal device/address for which the
packet is intended and whether the packet represents a request for data or represents the data
to be stored/interpreted to/by the target device. The latter information is coded in bit 3
(value=4) of the header word, with bit 3 set for requests for data. The meaning of the second
word in the Out Packet depends on the address and represents the sub-address in the case of
the Register Block and the number of words to follow, in the case of VME Stacks (VDS and
VSS) and the VME Generator (VCMD). The subsequent words in the buffer, if any,

WIENER, Plein & Baus GmbH 20 www.wiener-d.com

represent the data to be stored in the target device or the data to be interpreted and acted upon
by the target device (in the case of the VCMD). A detailed description of Out Packets for the
four target devices is given below.

4.2 Writing Data to the Register Block
The Out Packet for writing data to the Action Register (the single register) of the Register
block is composed of the following words:
1. Target Address = 1 the target address identifying the register block
2. Register Sub-Address = 10 secondary address of the Action Register
3. Data To be Written an 8-bit Action Register data word.

4.3 Reading Back Data from the Register Block
To read back data from the Register block, one must first send a request Out Packet to the
Register Block consisting of two words:
1. Target Address + 4 = 5 the target address of the Register Block + the data

 request bit (bit 3)
2. Register secondary address =10 of the Action Register.

4.4 Writing Data to the VME Command Stacks and to the VME Command
Generator

The Out Packets targeting the two VME Command Stacks, main (MCS) and auxiliary (ACS)
and the VME Command Generator (VCG) have identical structure, differing only in the
Target Address and in the allowed length. Given the width of the VME address and data
buses, the Stacks and the VME commands are organized as a sequence of 32-bit words.

1. Target Address 2, 3, or 8, for MCS, ACS, and VCG
2. Number of subsequent words in the stack
3. Zero word
4-N*2. Sequence of stack words where N=Number of 32-bit words in stack + 2
The VME Main Stack (Address=2) is 384 (32-bit) words deep and is intended for storing
information on the sequence of the VME commands to be performed when an event readout
is initiated, while VM-USB is operating in data acquision (as opposed to interactive) mode.
The VME Auxiliary Stack (Address=3) is 128 (32-bit) words deep and is intended for storing
information on the sequence of the periodic readout commands, when a periodic readout of
select devices (e.g., scalers) is desired. The VME Command Generator (Address 8) is an
internal module that interprets the information found either in the VME Stacks (when VM-
USB is in data acquisition mode) or in the Out Packet received from the USB port (when
VM-USB is in interactive mode).

WIENER, Plein & Baus GmbH 21 www.wiener-d.com

4.5 Structure of the VME Stack

The VME stack consists of a sequence VME commands encoded in 32-bit words. Every
command is encoded in two or more words, with the first and the second one always
specifying the VME address modifier with options (Mode word)) and the VME address
(Address Word), respectively.
The first Mode Word stores the 6-bit VME address modifier, along with other data defining
the write/read mode and the format of the VME data, and some options:

31-24 23-22 21-20 19 18 17 16 15-9 8 7-6 5-0
BLT NT * HM ND HD BE * NW DS AM

Where the individual bits have the following meaning:
AM 6-bit VME Address Modifier
DS VME data strobes DS0 and DS1. Zero indicates that a particular strobe is generated,

while 1 suppresses the strobe.
NW Write mode – NW=0 indicates “Write” operation and NW=1, “Read” operation.
* Don’t care
BE Endianess – BE=1 sets data mode to big endian (VME default) and BE=0 indicates

little endian.
HD Hit Data - identifies the data as a 16-bit hit register data (coincidence register data), to

be used for the conditional readout of subsequent VME modules. There may be one
or more hit registers in a stack, with the most recent being active.

ND Number Data - identifies the data as a 32-bit word containing in certain field the
desired length of the subsequent block transfer. The actual number is extracted by
taking a logical AND with a 32-bit mask word stored in Number Extract Mask
Register and it overrides the number specified in the dedicated bit field of the
subsequent block transfer command (first command line, bits 24-31).

HM Hit Mode - instructs the command Generator to condition the readout with the content
of the latest hit pattern read in the event. The Number of Product Terms used to
condition the readout must be specified as well.

NT Number of Product Terms – specifies the number of 32-bit words in the stack that
follow and that constitute bit masks for constructing a logical equation used in
deciding whether the given operation is to be performed for the particular hit register
data.

BLT Number of transfers in block transfer mode (defined in address modifier word, AM)

The second stack line contains VME address, which can be 16-bit, 24-bit, or 32-bit wide,
depending on the address modifier word AM. Bit 0 represents the VME LWORD.
The following rules apply:

WIENER, Plein & Baus GmbH 22 www.wiener-d.com

 (i) When NW=0 (write mode), the second stack line must be followed by one (single
“write”) or BLT (block transfer) data lines.
 (ii) When the Hit Mode (HM) bit is set, the Number of Terms bits must be declared. The
second stack line must be followed by the specified number of 32-bit data lines representing
bit masks BMask(1 to NT), to be used in constructing the logical condition for performing
the command. The logical equation is:
 (BMask(1) AND HD = BMask(1)) OR
 (BMask(2) AND HD = BMask(2)) OR
 (BMask(3) AND HD = BMask(3)) OR
 (BMask(4) AND HD = BMask(4)),
i.e., the command will be performed whenever all bits in any of the specified Bit Maks are
set in the most recent hit register data.
The “write” data must be properly formatted, according to their endianess and their
placement on the bus. The latter is defined by values of the data strobes, A(0) (LWORD),
and A(1).
Various “write” data formatting patterns and the corresponding Mode / Address bits are
illustrated in the table below.

BE DS1 DS0 A(1) A(0)

LWORD
D31-
D24

D23-D16 D15-D8 D7-0

1 0 0 0 0 Byte(0) Byte(1) Byte(2) Byte(3)
1 0 1 0 0 Byte(0) Byte(1) Byte(2) -
1 1 0 0 0 - Byte(1) Byte(2) Byte(3)
1 0 0 1 0 - Byte(1) Byte(2) -
1 0 0 1 1 - - Byte(2) Byte(3)
1 0 0 0 1 - - Byte(0) Byte(1)
1 1 0 1 1 - - - Byte(3)
1 0 1 1 1 - - Byte(2) -
1 1 0 0 1 - - - Byte(1)
1 0 1 0 1 - - Byte(0) -
0 0 0 0 0 Byte(3) Byte(2) Byte(1) Byte(0)
0 0 1 0 0 Byte(2) Byte(1) Byte(0) -
0 1 0 0 0 - Byte(3) Byte(2) Byte(1)
0 0 0 1 0 - Byte(2) Byte(1) -
0 0 0 1 1 - - Byte(3) Byte(2)
0 0 0 0 1 - - Byte(1) Byte(0)
0 1 0 1 1 - - - Byte(0)
0 0 1 1 1 - - Byte(1) -
0 1 0 0 1 - - - Byte(2)
0 0 1 0 1 - - Byte(3) -

WIENER, Plein & Baus GmbH 23 www.wiener-d.com

Byte(0) is the least significant byte. The A(1) and A(0)/LWORD bits have to be defined
accordingly in the Address Word.
The data read from the VMEBus are either 16-bit or 32-bit wide. They are filled always from
Byte(0) in a contiguous manner. Single-byte and two-byte data are stored in 16-bit words,
while longer data are stored in 32-bit words.
Since the stack can be quite complex, it is advisable to write a proper routine or macro to set
it up. As a convenient option, one may utilize the XXUSBWin Windows application to build
the stack and save it to disk.
The MS Windows application XXUSBWin allows one to create, save, and read, as well as to
upload the VME command stack list in an easy and convenient way.

Further it is possible to create the VME command stack with either a text editor or user
program. All required programming details are given in chapter 4.5.
The following example shows the VME command stack (as saved to file) for a VME 32-bit
write to address 0x78000020 / data 0xAAAAFFFF as well as a VME 16-bit read from
address 0x78000120, both with AM=0x09. Please note that the VME command stack is
based on 32-bit words but arrange in 16-bit lines, i.e. 2 consequent lines belong to one 32-bit
word. Explanations are added in blue color:

VM-USB Command Stack Generated on 8/29/2005 at 5:56:57 PM
 11 // number of following lines
0000 // 0 line to match 32-bit structure
0009 // AM / write mode (bits 0-15)
0000 // BLT / special modes (bits 16-31)

WIENER, Plein & Baus GmbH 24 www.wiener-d.com

0020 // VME address (bits 0-15)
7800 // VME address (bits 16-31)
FFFF // data (bits 0-15)
AAAA // data (bits 16-31)
0109 // AM / write mode (bits 0-15), bit 8=1 for read
0000 // BLT / special modes (bits 16-31)
0121 // VME address (bits 0-15), A0=1 for 16bit
7800 // VME address (bits 16-31)

4.6 Structure of the IN Packets

The General Output Buffer is associated with Endpoint 6 of the USB2 controller IC, which is
configured as a 512 byte deep FIFO. This endpoint is configured for bulk transfer and one
can specify lengths of buffers to be read of any length (up to 26 kBytes) compatible with the
VM-USB functionality. All data supplied by the VM-USB is to be read from the Endpoint 6.
While reading, it is important to specify the length of the buffer not shorter than the length of
the actual data buffer written by the VM-USB into this endpoint.
The structure of data retrieved in conjunction with direct requests for data addressed to the
Register Block and to the VME Stacks is straightforward, such that the buffer consists only
of the requested data.
The data buffers read during the data acquisition process have a structure depending on the
buffer filling mode selected by bit 4 of BuffOpt code specified in the Global Register. The
default filling is such that the buffer contains only complete events (bit 4 of BuffOpt=0). On
the other hand, when bit 4 of BuffOpt is set, continuous filling is selected allowing single
events to span two or more buffers. Whenever the size of a single event exceeds the declared
size of the data buffer and the filling mode is set for complete events, the filling mode
switches to continuous mode, with this fact tagged by setting of the bit 13 of the buffer
header word.
For the Complete Event Mode, the data buffer has the following structure:
1. Header word Bit 15 set indicates a watchdog buffer, bit 14 set indicates a

scaler buffer. Bit 13 indicates an “emergency” switch to a
continuous mode, Bits 0 – 9 represent the number of events
in the buffer.

2. Optional 2nd Header Word Bits 0-11 represent the number of words in the buffer.
3. Event Length Event length including terminator words.
4-N1. Event Data
N2. Event Terminator hexadecimal 5555
N3. Optional 2nd Terminator hexadecimal AAAA
.
. Subsequent Events
.

WIENER, Plein & Baus GmbH 25 www.wiener-d.com

N5. Buffer Terminator hex FFFF
The unpacking of the events must be done in accordance with the VME Stack that is
involved in generating the buffer.
In the Continuous (split-event) mode, when events span two or more buffers, no buffer
terminator is written.
For the direct access of the VME Command Generator (Interactive VME operations), no
header words are written and the In Packet contains only one event.
VM-USB has dedicated 2kWords-long event FIFO to compile events. To handle longer
events, VM-USB splits the long event into parts, each of which appears as a separate event in
the output buffer. The partial events are tagged by setting bit 12 of the Event Length word,
except for the last part. Also, only the last “installment” is terminated by the Event
Terminator word (s).
VM-USB has a provision to automatically switch the output buffer packing mode to Split-
Event mode, whenever the Event Length exceeds the length of the Integer-Event buffer. The
fact of such a change is indicated by setting of bit 13 in the buffer header word.

VME Write returns a single word, with bit 0 = 1 signaling successful operation (S=1), while
bit 0=0 signals bus error condition, BERR (S=0):

VME 8 and 16-bit Read returns a single word with data in bits 0-8 and 0-15, respectively:

VME 24-bit Read: returns 2 words, with data bits 0-15 and 16-23, respectively:

VME 32-bit Read: returns 2 words, with data bits 0-15 and 16-31, respectively:

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1. D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1. D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
2. 0 0 0 0 0 0 0 0 D23 D22 D21 D20 D19 D18 D17 D16

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1. D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
2. D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16

WIENER, Plein & Baus GmbH 26 www.wiener-d.com

5 GUIDE TO LIST MODE DATA ACQUISITION WITH VM-USB

VM-USB is intended for use in list mode data acquisition, where it performs sequences of
desired VME operations pursuant to stack(s) stored in it, upon receipt of event trigger. VM-
USB then formats the data read form the VME bus and buffers them in a data buffer. When
the buffer is full, VM-USB transfers its content to the In FIFO of the USB controller IC for
readout by host software.

To set up VM-USB for data acquisition in list mode the following steps are advised:

1. Build the regular VME command stack by adding all the desired simple and complex
commands to it. One must make sure that the stack sequence will clear all VME
modules. It is recommended to first execute the stack from the host software to verify
that it performs as intended. For this purpose the libxxusb library function
xxusb_stack_execute can be used.

2. Load the stack into the VM-USB memory, e.g., by calling the libxxusb library
function xxusb_stack_write. It is recommended to read back the stack (function
xxusb_stack_read), to verify that the stack is correctly stored.

3. When the setup calls for it, build and load the auxiliary stack.
4. Set the trigger delay (time from the receipt of an event to the commencement of the

stack execution).
5. If VM-USB is not the slot 1 controller, set up the bus request level, by writing the bus

request level code into bits 12-14 of the Global Register.
6. Set up event termination mode. By default, VM-USB terminates every event by one

terminator word 0x5555, with the second word 0xAAAA being optional..
7. Set up buffering mode and data buffer length by writing a suitable 5-bit code into bits

0-4 of the Global Mode Register. The default is buffer length of 13k words and events
fitting into one buffer.

8. Set buffer header option. By default, VM-USB writes one buffer header word
containing information on the number of events in the buffer, buffer type (regular, or
periodic auxiliary), and the buffer termination mode (regular or watchdog).

9. Start acquisition by setting bit 0 of the Action Register to 1. End acquisition by
resetting this bit to “0”. While in acquisition mode, the host software is expected to
read the USB port In FIFO in a loop, to empty it and make space for subsequent
events.

WIENER, Plein & Baus GmbH 27 www.wiener-d.com

6 LIBXXUSB LIBRARY FOR WINDOWS AND LINUX

A dedicated library of functions was developed to facilitate the utilization of VM-USB and
its VME counterpart, VM-USB. This library is called libxxusb and requires the libusb0.sys
driver to be installed. It is in fact a wrapper library for the general-use libusb-win32 library
available via www.sourceforge.net at no charge.

All xxusb functions for both 32-bit MS Windows (Win98SE, WinME, Win2k, WinXP) as
well as for Linux rely on the USB library “libusb-win32”(Windows) or “libusb” (Linux). For
further details about these libraries please see www.sourceforge.net or
http://sf.net/projects/libusb/ .

6.1 xxusb_devices_find

The xxusb_devices_find function retrieves relevant parameters of USB ports of all XX-USB
devices attached to the host and returns these in an array of proper structures. This is the first
command to be issued when attempting to establish communication with an XX-USB.

WORD xxusb_devices_find{
 XXUSB_DEVICE_TYPE lpXXUSBDevice,
};

Parameters
lpXXUSBDevice

[out] Pointer to an array of structures storing parameters of all XX-USB devices
identified.

Return Values
On success, the function returns the number of XX-USB devices found, including 0.
A negative return value indicates that the handle to a valid device could not be opened as a
result of insufficient privileges. It is recommended to retry in Superuser mode.

6.2 xxusb_device_open

The xxusb_device_open function obtains handle to the desired XX-USB device, identified by
xxusb_devices_find command. This is the second command to be issued when attempting to
establish communication with an XX-USB. The obtained handle is then to be used while
calling various xxusb_*_* functions, that require the handle. Upon termination of a XX-USB
session, the handle is to be released by calling xxusb_handle_close.

WORD xxusb_device_open{
 USB_DEVICE_TYPE lpUSBDevice,
};

Parameters
lpUSBDevice

[in] Pointer to a structure storing parameters of the target XX-USB devices.

WIENER, Plein & Baus GmbH 28 www.wiener-d.com

Return Values
On success, the function returns the handle to the target XX-USB device. A negative return
value indicates that the handle to a valid device could not be opened as a result of insufficient
privileges. It is recommended to retry in Superuser mode.

Remarks
While all xxusb functions rely on the libusb (www.sourceforge.net) functions while
communicating with XX-USB, xxusb_device_open and xxusb_handle_close are simply
macros creating aliases to usb_open and usb_close functions of the libusb library.

6.3 xxusb_device_close

The xxusb_device_close function closes the handle to the desired XX-USB device, obtained
by a xxusb_device_open call. This function is to be called upon termination of an XX-USB
session.

WORD xxusb_device_close{
 USB_DEV_HANDLE lpUSBDevice,
};

Parameters
lpUSBDevice

[in] Pointer to a variable containing the handle to be closed.

Return Values
Returns negative upon failure.

Remarks
While all xxusb functions rely on the libusb (www.sourceforge.net) functions while
communicating with XX-USB, xxusb_device_open and xxusb_handle_close are simply
macros creating aliases to usb_open and usb_close functions of the libusb library.

6.4 xxusb_reset_toggle

The xxusb_reset_toggle function toggles the reset state of the FPGA while XX-USB is in
programming mode – rotary selector set in one of four P* positions.

WORD xxusb_reset_toggle{
 HANDLE hDevice,
};

Parameters
hDevice
 [in] Handle to the XX-USB device.

Return Values

WIENER, Plein & Baus GmbH 29 www.wiener-d.com

Returns negative upon failure.

6.5 xxusb_register_write

The xxusb_register_write sends a data buffer to XX-USB, causing the latter to store the
desired data in the target register.

WORD xxusb_register_write{
 HANDLE hDevice,
 WORD wRegisterAddress,
 DWORD dwRegisterData
};

Parameters
hDevice
 [in] Handle to the XX-USB device.

wRegisterAddress
 [in] Address of the XX-USB register.

 For a list of XX-USB addresses, see Remarks

dwRegisterData
 [in] Data to be stored in the register.

Return Values
On success, the function returns the number of bytes sent to XX-USB.
Function returns 0 on attempted writes to read-only registers and negative numbers on
failures.

6.6 xxusb_register_read

The xxusb_register_read function first, sends a buffer to XX-USB, causing the latter to write
the content of a desired register to its USB port FIFO and then, obtains the value by reading
the buffer from the XX-USB.

WORD xxusb_register_read{
 HANDLE hDevice,
 WORD wRegisterAddress,
 LPDWORD lpRegisterData
};

Parameters
hDevice
 [in] Handle to the XX-USB device.

wRegisterAddress
 [in] Address of the XX-USB register.

WIENER, Plein & Baus GmbH 30 www.wiener-d.com

 For a list of XX-USB addresses, see Remarks

lpRegisterData

[out] Pointer to a variable that receives the data returned by the operation, i.e., the value
stored at wRegisterAddress of XX-USB.

Return Values
On success, the function returns the number of bytes read XX-USB. Valid values are 2 and 4,
with the latter only for LAM Mask and LAM registers.
Function returns a negative number on a failure.

6.7 xxusb_stack_write

The xxusb_stack_write function sends a buffer to XX-USB, causing the latter to store this
content in a dedicated block RAM, for use when data acquisition mode is active. This content
can be read back using xxusb_stack_read function.

WORD xxusb_stack_write{
 HANDLE hDevice,
 WORD wStackType,
 LPDWORD lpStackData
};

Parameters
hDevice
 [in] Handle to the XX-USB device.

wStackAddress

[in] Type of the XX-USB stack, the content of which is to be read. Valid types are 0,
for the regular stack and 1, for the periodic (scaler) readout stack.

lpStackData

[in] Pointer to a variable array that contains the data to be stored in the target stack.

Return Values
On success, the function returns the number of bytes sent to XX-USB. The latter value is
twice the length of the stack plus 2 (for a header word identifying a stack as a target).
Function returns a negative number on a failure.

Remarks
The physical length of the regular stack is 768 16-bit words for VM-USB and 768 32-bit
words for VM-USB.
The physical length of the periodic (scaler) stack is 256 16-bit words for VM-USB and 256
32-bit words for VM-USB.
While the stack is expected to contain properly encoded sequence of VME (VM-USB) or
VME (VM-USB) commands to be performed by XX-USB, it can store any sequence of
numbers.

WIENER, Plein & Baus GmbH 31 www.wiener-d.com

6.8 xxusb_stack_read

The xxusb_stack_read function first, sends a buffer to XX-USB, causing the latter to write
the content of a desired stack to its USB port FIFO and then, obtains this content by reading a
buffer from the XX-USB.

WORD xxusb_stack_read{
 HANDLE hDevice,
 WORD wStackType,
 LPDWORD lpStackData
};

Parameters
hDevice
 [in] Handle to the XX-USB device.

wStackAddress

[in] Type of the XX-USB stack, the content of which is to be read. Valid types are 0,
for the regular stack and 1, for the periodic (scaler) readout stack.

lpStackData

[out] Pointer to a variable array that receives the data returned by the operation, i.e., the
content of a XX-USB stack.

Return Values
On success, the function returns the number of bytes read from XX-USB. The valid value is
twice the length of the stack, as the latter stores 2-byte words.
Function returns a negative number on a failure.

6.9 xxusb_stack_execute

The xxusb_stack_execute function first, sends a buffer to XX-USB, causing the latter to
interprete its content as a series of simple and complex VME commands and to actually
execute these commands and to write the returned VME data to the USB port FIFO. Then,
xxusb_stack_execute reads a buffer from XX-USB, containing the desired VME data.

WORD xxusb_stack_execute{
 HANDLE hDevice,
 LPDWORD lpData,
};

Parameters
hDevice
 [in] Handle to the XX-USB device.

lpData

WIENER, Plein & Baus GmbH 32 www.wiener-d.com

[in] Pointer to a dual-use variable array. When calling the function, the array contains
the data encoding the sequence of desired commands (VME commands for VM-USB
and VME commands for VM-USB) to be performed by XX-USB. The first element of
the array is the number of bytes. The following command has to be defined similar to
the VME / VME command stack (see paragraph 4.5). Upon return, the array contains
the VME (VM-USB) or VME (VM-USB) data, respectively.

Return Values
On success, the function returns the number of bytes read from XX-USB. The valid value is
twice the number of 16-bit data words returned plus 2 (VM-USB) or 4(VM-USB). The latter
“overhead” bytes contain event terminator word (0xFF for VM-USB, and 0xFFFF for VM-
USB).
Function returns a negative number on a failure.

6.10 xxusb_usbfifo_read

The xxusb_usbfifo_read function reads the content of the USB port FIFO of XX-USB or
times out whenever this FIFO has not set the “FIFO Full” flag.

WORD xxusb_usbfifo_read{
 HANDLE hDevice,
 LPDWORD lpData,
 WORD wDataLen,
 WORD wTimeout
};

Parameters
hDevice
 [in] Handle to the XX-USB device.

lpData

[out] Pointer to a variable array that receives the data returned by the operation, i.e., the
content of the USB port output FIFO of the XX-USB.

wDataLen
[in] Number of words to read. This number must be not less than the number of bytes
stored in the output FIFO.

wTimeout

[in] Time in milliseconds, after which the I/O operation is canceled, should there be no
data available for the readout.

Return Values
On success, the function returns the number of bytes read from XX-USB.
Function returns a negative number on a failure, which in most cases signifies a timeout
condition.

Remarks

WIENER, Plein & Baus GmbH 33 www.wiener-d.com

The xxusb_usbfifo_read is intended for use while XX-USB is in data acquisition mode. Upon
timeouts, the host application receives the control and may reissue the command or terminate
the acquisition

6.11 xxusb_bulk_read

The xxusb_bulk_read function reads the content of the USB port FIFO of XX-USB or times
out whenever this FIFO has not set the “FIFO Full” flag.

WORD xxusb_bulk_read{
 HANDLE hDevice,
 CHAR *pData,
 WORD wDataLen,
 WORD wTimeout
};

Parameters
hDevice
 [in] Handle to the XX-USB device.

pData

[out] Pointer to a character array that receives the data returned by the operation, i.e.,
the content of the USB port output FIFO of the XX-USB.

wDataLen
[in] Number of bytes to read. This number must be not less than the number of bytes
stored in the output FIFO.

wTimeout

[in] Time in milliseconds, after which the I/O operation is canceled, should there be no
data available for the readout.

Return Values
On success, the function returns the number of bytes read from XX-USB.
Function returns a negative number on a failure, which in most cases signifies a timeout
condition.

Remarks
The xxusb_bulk_read is given for the sake of completeness.

6.12 xxusb_bulk_write

The xxusb_bulk_write function writes a character array to the USB port FIFO of XX-USB.

WORD xxusb_bulk_write{
 HANDLE hDevice,
 CHAR *pData,
 WORD wDataLen,

WIENER, Plein & Baus GmbH 34 www.wiener-d.com

 WORD wTimeout
};

Parameters
hDevice
 [in] Handle to the XX-USB device.

pData

[out] Pointer to a character array that receives the data returned by the operation, i.e.,
the content of the USB port output FIFO of the XX-USB.

wDataLen
[in] Number of bytes to read. This number must be not less than the number of bytes
stored in the output FIFO.

wTimeout

[in] Time in milliseconds, after which the I/O operation is canceled, should there be no
data available for the readout.

Return Values
On success, the function returns the number of bytes read from XX-USB.
Function returns a negative number on a failure, which in most cases signifies a timeout
condition.

Remarks
The xxusb_usbfifo_read is given for the sake of completeness.

6.13 xxusb_flashblock_program

The xxusb_flashblock_program function programs one sector of 256 bytes of the flash
memory (FPGA configuration memory)

WORD xxusb_usbfifo_read{
 HANDLE hDevice,
 UCHAR *pData,
};

Parameters
hDevice
 [in] Handle to the XX-USB device.
pData

[out] Pointer to the configuration (byte) data array.

Return Values
On success, the function returns the number of bytes written to XX-USB – the correct
number is 518.

WIENER, Plein & Baus GmbH 35 www.wiener-d.com

Function returns a negative number on a failure, which in most cases signifies a timeout
condition.

Remarks
To program the flash memory, one must call repeatedly xxusb_flashblock_program, while
pausing for at least 30ms between consecutive calls and incrementing the pointer to the data
array by 256 on each consecutive call. The device must be in programming mode with the
rotary selector in one of the 4 “P” positions and with the red “Fail” LED on.
The configuration file of a XC3S200 FPGA of VM-USB will occupy 512 sectors of flash
memory (512 calls to the xxusb_flashblock_program). The XC3S400 FPGA of VM-USB
will occupy 830 sectors of flash memory.

WIENER, Plein & Baus GmbH 36 www.wiener-d.com

7 APPENDIX A: PROGRAMMING AND THE USE OF FLASH MEMORY

The VM-USB stores the FPGA configuration files in a 1-MByte flash memory (organized as
two 512-kByte ICs). This size of the memory allows one to accommodate up to 4
configuration files of an XC3S400 FPGA, such as used in VM-USB. The individual address
spaces of the four possible configuration files are selected by the state of two bits a front-
panel rotary selector switch. This rotary switch provides, in fact, for a 3-bit (1 out of 8)
selection, with third bit being used to select one of the two possible modes of operation –
“Configuring” (C) and “Programming” (P) modes, respectively. Normally, VM-USB is
operated in the C (C1-C4 labels) mode, with the FPGA cold-booting itself upon power up
from a selected segment of the memory, identified by the digit of the label.

The design of the VM-USB allows one to reprogram any of the four segments of the flash
memory via the USB interface. The programming and reprogramming is possible only in the
Programming mode, selected by any of the P* settings (P1-P4 labels) of the rotary selector
and when the FPGA is kept in a reset mode by the boot manager CPLD, which is a default
after cold-booting in the P mode (red “Fail” LED on). While in the P mode, the manager
CPLD can be instructed, via the USB interface, to release the FPGA from reset. When
released from the reset state, the FPGA will attempt to boot itself from the selected segment
of flash memory, with a successful boot indicated by the red “Fail” LED turning off.
Subsequently, but only upon a successful boot, the CPLD can be instructed to assert again
the reset signal for the FPGA, allowing one to undertake another programming sequence.

While the VM-USB can be operated in the P mode, with the FPGA reset released, it is
recommended to switch to a respective C setting for a regular operation.

In fact, there are only two types of operations specific to P mode – programming of a 256-
byte sector of the flash memory (with automatic address increment) and toggling of the reset
status of the FPGA. Accordingly, there are two types of data buffers that must be sent to the
USB port by the host to perform the desired operation.

The sector programming buffer is 518 bytes long and contains three “sector unlock”
(AT29LV040 software protection override) data bytes and the 256 configuration file bytes in
odd bytes (counting from 0), with all even bytes being disregarded:

0 0’** don’t care
1 0’AA first “sector unlock” code
2 0’**
3 0’55 second “sector unlock” code
4 0’**
5 0’A0 third “sector unlock” code
2*n+6 0’** where n = 0 - 255
2*n+7 byte(k) consecutive byte of the configuration file
The FPGA “reset toggle” buffer is only two bytes long with the first byte being disregarded
and the second one being equal to 0’FF or decimal 255.

In accordance with the above, to program/reprogram a segment of the flash memory one
needs to execute the following sequence:

WIENER, Plein & Baus GmbH 37 www.wiener-d.com

With the FPGA booted (“Fail” LED off):

1. Set the rotary switch to a P position pointing to the desired segment => the red “Fail”
LED should turn on.

With VM-USB off or the FPGA failure to boot:
 1a. Cold-boot VM-USB with the rotary switch in the desired P position.

2. Send successively the 830 sector programming buffers containing a complete
configuration file of the XC3S400 FPGA to the USB port in bulk transfer mode,
while specifying the data length as 518 bytes and allowing at least 30ms wait time
between the consecutive buffers.

3. Send an FPGA “reset toggle” buffer, or cold-boot VM-USB in the corresponding C
mode. A successful boot will be indicated by the “Fail” LED turned off.

The use of the flash memory programming capability is largely facilitated by the availability
of dedicated libxxusb functions xxusb_flashblock_program and xxusb_reset_toggle, as
illustrated by the following sample codes written in Visual Basic:

‘Flash memory programming
For i = 0 To 829
 k = i * 256 + 1
 ll = xxusb_flashblock_program(EZHandle, bytes(k))
 DLY (30) ‘30ms delay generator
Next i

‘Releasing or setting the FPGA reset:
ll=xxusb_reset_toggle(EZHandle)

In the above two samples, EZHandle represents the USB handle of the VM-USB and bytes()
is an array storing the desired FPGA configuration file (220 kB).

WIENER, Plein & Baus GmbH 38 www.wiener-d.com

8 APPENDIX B: USE OF MULTIPLEXED USER DEVICES

The FPGA configuration of the VM-USB may set up optionally various user devices, that are
beyond the scope of a VME controller, but which are intended to facilitate and reduce the
cost of a data acquisition setup. The “release” firmware of the VM-USB, (Firmware Id =
85000402) sets up two delay and gate generators, DGG_A and DGG_B and two 32-bit
scalers, SCLR_A and SCLR_B.

8.1 Characteristics and the Use of Delay and Gate Generators

The two user gate and delay generators allow one to generate delays and gates in the range of
12.5 ns – approx. 800 us, with the 12.5 ns granularity.

To make use of an DGG_A or DGG_B, one simply needs to select the desired trigger signal
by properly setting the respective selector code bits in the User Devices Register and set
write the desired delay and gate data (in units of 12.5 ns) into the respective DGG register, as
described in Section ???

8.2 Characteristics and the Use of Scalers

The two user scalers allow one to count various signals and read out the resulting numbers in
VME-like commands. The latter commands address the VME address space allocated to the
VM-USB and do not generate any activity on the VME bus. Both scalers are asynchronous
with respect to the VM-USB clock, each using a dedicated fast clock network driven by the
selected clock signal.

The use of the scalers is straightforward and entails selecting their respective input sources
and enabling their operation by setting the respective “enable” bits. Optionally, one may wish
to disable them by resetting the respective “enable” bits or clearing them by writing “1” to
the respective “reset” bits.

