SIS1100/3100 Standard design V_261101

User Manual

SIS GmbH Harksheider Str. 102A 22399 Hamburg Germany

Phone: ++49 (0) 40 60 87 305 0 Fax: ++49 (0) 40 60 87 305 20

email: info@struck.de http://www.struck.de

Version: 1.11 as of 26.11.01

SIS1100/3100 PCI to VME

Revision Table:

Revision	Date	Modification
0.0	19.01.01	Generation
0.1	13.07.01	mki touch up
1.0	26.10.01	Initial release
1.1	05.11.01	- OPT-IN/OUT register
		- OPT-IN register
		- OPT-VME-Interrupt register
		- Doorbell register
1.11	26.11.01	- VME SLAVE register description
1		

1 Table of contents

1			
2			
3			
	0 1	VME side	
		n	
		PCI side (SIS1100)	
4			
4	6	· 1	
5		rotocol	
	0.	otocol	
		ecial word	
		BLT8 Access	
		BLT16 Access	
		BLT32 Access	
		Access	
		ansfer Protocol	
		egister	
		egister	
		ccess Transfer Protocol	
		Vrite Direct VME Bus Access	
		ead Direct VME Bus Access	
		Write Direct VME Bus Access	
	5.6.4 Block transfer	Read Direct VME Bus Access	
	5.7 Mapped VME Bus	Access Transfer Protocol	
	5.7.1 Single Word W	Vrite mapped VME Bus Access	
	5.7.2 Single Word R	ead mapped VME Bus Access	
		Write mapped VME Bus Access	
		Read mapped VME Bus Access	
		Protocol	
	ũ	Vrite SDRAM	
		ead SDRAM	
		Write SDRAM	
		Read SDRAM	
6		the Optical Interface	
	8 1		
		r/Version register(0x0, read)	
	*	register (0x4, r/w)	
		l register (0x8, r/w)	
		Register (0x80,read /write)	
		CH_IRQ Register (0x84,read /write)	
		aster Status/Control register (0x100,read/write) errupt Status/Control register (0x104,read /write)	
		ave Status/Control register (0x200,read /write)	
		us/Control Register (0x200, r/w)	
		ldress MAP register 0.255 (0x4000x7FC,read/write)	
		aress MAT register 0255 (0x4000x71°C,read/write)	
	1		
7	1	се ive	
'		s Map	
8		5 Mu p	
0			
		front panel LEDs	
	-	ED Link up off	
	r · · · · · · · · · · · · · ·	1	

SIS1100/3100 PCI to VME

8.2 PCB LEDs	45
9 SIS3100 Jumpers	
9.1 J10	
9.2 J90	
9.2.1 JP_DSP	
10 VME system controller	
11 SIS1100 Hardware Description	
11.1 PCI Front panel	
11.2 SIS1100 LEDs	49
11.2.1 Front panel LEDs	49
11.2.2 SIS1100-OPT PCB LEDs	50
11.2.3 SIS1100-CMC PCB LEDs	50
11.3 SIS1100 Input termination	51
12 Appendix	52
12.1 Power consumption	52
12.2 I/O option Jumper description	53
12.2.1 JP710	53
12.2.2 JP770	53
12.2.3 Schematic of flat I/O connector	54
12.2.4 Schematic of LEMO I/O section	
12.3 Boot mechanisms	56
12.3.1 ISP PROM	
12.3.2 JTAG	56
12.4 Connector types	
13 Index	58

2 Introduction

The goal of the project was the development of a high performance VME list sequencer to PCI interface, which was tailored to match the requirements of Particle Physics experiments, related applications and other demanding data acquisition systems. The maximum anticipated data rate on the VME side, required medium to long link distances in large scale setups and the wish for electrical decoupling resulted in the selection of a fibre optic Gigabit solution as the interconnecting technology.

As we are aware, that no manual is perfect, we appreciate your feedback and will try to incorporate proposed changes and corrections as quickly as possible. The most recent version of this manual can be obtained by email from info@struck.de, the revision dates are online under http://www.struck.de/manuals.htm. A list of available firmware designs can be retrieved from http://www.struck.de/sis3100firm.htm

Note: The SIS1100/3100 PCI to VME interface was developed in a collaborative effort between the ZEL department of the Research Center Jülich and SIS GmbH.

Not covered by this version of the manual yet:

- pipelined single cycles
- mapped access
- list execution
- triggered transfers of list/wait for input
- complex DSP list concept and implementation

3 Overview

The SIS PCI to VME interface consists of the SIS1100 PCI card and the SIS3100 VME list sequencer and an interconnecting link fibre. The SIS1100 card is divided into the SIS1100-CMC PCI CMC (common mezzanine card) and the SIS1100-OPT gigabit link CMC card.

3.1 Design Concept of VME side

The VME side of the PCI to VME interface, the SIS3100, is a modular design, that can be configured for the given application.

Find below a list of key features of the SIS3100.

- VME List sequencer
- Mapping table with 256 entries
- VME Master: A16/A24/A32/A40 D8/D16/D32/BLT32/MBLT64/2eMBLT64
- VME Slave: A32/D32/BLT32/MBLT64
- Block transfer address auto increment on/off (for FIFO reads)
- System controller function (can be disabled by jumper)
- Hot swap (in conjunction with VME64x backplane)
- VME64x Connectors
- VME64x Side Shielding
- VME64x Front panel
- VME64x extractor handles (on request)
- 10 front panel and 8 PCB LEDs
- single supply (+5 V)

A block diagram of the SIS3100 is shown below.

SIS3100 block diagram

3.1.1 I/O Option

The I/O option features extended data handling and input/output functionality. It comprises the I/O FPGA, connectors for the optional SIS9200 SHARC DSP, the DIMM socket and the front panel input/output hardware, which features:

- 4 flat cable inputs (ECL or TTL)
- 4 flat cable output (ECL or TTL)
- 3 LEMO inputs (NIM or TTL)
- 3 LEMO outputs (NIM or TTL)
- 1 LEMO reset input (NIM or TTL)
- 1 LEMO reset input (NIM or TTL)

The inputs can be used for conditional VME sequencer control and the outputs can be set/cleared under sequencer control for interaction with external dead time or other logic. This results in a substantial increase in performance compared to the use of an external VME I/O register, as no VME cycle (leave alone interrupt cycle) is involved.

3.1.2 DSP option

The DSP option comprises a SIS9200 SHARC DSP piggy back board with SHARC links (i.e. ADSP21062L chip) for histogramming or higher level trigger applications.

3.1.3 SDRAM option

The SDRAM option consists of the DRAM controller firmware and a SDRAM memory strip, which is available in 64, 128, 256 and 1024 MByte

3.2 Design concept of PCI side (SIS1100)

The SIS1100 PCI Gigabit link card was developed to act as PCI target and initiator to allow for the use of PCI block transfer cycles. A PLX9054 PCI to local bus interface, which is PCI 2.1 and 2.2 compliant is used as the interfacing hardware. The SIS1100 is subdivided into the SIS1100-CMC, which is a CMC carrier board, and the SIS1100-OPT, which is a CMC Gigabit link board.

- PCI 2.1 and 2.2 compliant
- PLX9054 PCI master bridge chip
- Protocol FPGA
- serial configuration PROMs for FPGA and PLX bridge
- JTAG port to FPGA PROM and FPGA
- CMC (IEEE P1386 Draft 2.3) single size carrier
- all CMC data lines routed to FPGA
- 4 SMD LEDs routed to FPGA

Block diagram of SIS1100-CMC

3.2.1 I/O Option

The I/O option for the SIS1100-CMC, which can be used on the SIS1100 board was introduced to allow for direct interaction with the readout PC. The input/output option features:

- 2 LEMO inputs (TTL)
- 2 LEMO outputs (TTL)

4 Gigabit Hardware

Small form factor (SFF) Gigabit link media were chosen as the physical layer of the link of the SIS PCI to VME interface. Media with LC connectors are used, patch fibres to other standards like ST are readily available for large scale connections through 19" patch fields. The link is clocked at 125 MHz (i.e. a 62.5 MHz clock is doubled by a delay locked loop in the protocol XILINX FPGA), what results in a payload of 125 Mbytes/s. With the standard multimode link media distances of up to 450 m can be covered, single mode media and fibres extend the range up to 80 km. Due to pipelining single cycle and high speed block transfer capabilities link latency will not play a significant role for most applications even at very long distances.

5 Gigabit-Link Transfer Protocol

32-bit words are transmitted over the Gigabit-Link. The link hardware is in charge of proper structure. Loss of synchronisation or errors are reported to the corresponding host. Any transmission starts with a special word, in the case of a block transfer it can end with a special character also if the transfer length is undefined or smaller than the requested length.

One bit in the FIFOs is used to flag a special word, with Byte 0 being 0x1C (SC_PROT K28.0).

Byte loss can be detected as all 4 Bytes of a word are transmitted without interruption. All characters up to the next special character are ignored if the data link layer detects an error.

5.1 Protocol Integrity

A protocol sequence has to be transmitted without interruption, i.e. a mixture of request and confirmation protocols is not allowed.

5.2 General Transfer Protocol

The protocol structure depends on the protocol header (special word). In general the transfer protocol structure is as described in the table below.

	Bit[31:24] phys. Byte 0	Bit[23:16] Byte 1	Bit[15:8] Byte 2	Bit[7:0] Byte 3	
special word	SC_PROT Special Char	ctl: control	sp: space	be: byte enable	
AM		Address Mod	ifier Bit 15:0		direct VME access only
ADDR_H		Address	A63-32		64 Bit only
ADDR_L		Address			
DATA_H	Data I	063-32 (registe	r contents swa	pped)	64 Bit only
DATA_L/BC	Data	D31-0/Byte co	ount with BT I	Read	
DATA		consecutive of	Disaist sourcefor		
					Blockt ransfer Write only
special word	SC_PROT	ctl: END			wille only

The individual 32-bit words are transmitted beginning with Byte 0, a protocol sequence starts with special character SC_PROT always. Hence this Byte is transmitted as the first Byte of the *special words*. As mentioned above the value is 0x1C (SC_PROT, K28.0).

5.3 Protocol Header, special word

The special word is formed as illustrated in the table below

Bit	Byte	Bit	Comment
31-24 FF000000		SC_PROT 0x1C always	
23	CTL (Control)	EOT DMA end	To be set in protocol END only
22		FIFO no address increment	With BT (block transfer) only
21		BT block transfer	The address is followed by the byte count (1 word) in a read request.
20		A64 64/bit address	with request protocol only
19 00080000		AM address modifier contained	An AM can be present in a request protocol only
18		WR write request	0: read 1: write
17-16		 00 REQ 01 END 10 CON 11 ECON 	Request, protocol start End of block transfer Confirmation, positive confirmation Error confirmation
15-14 0000c000	SP Space, to be returned unchanged	0: normal transfer1: Buffer pipe2: DMA0 pipe3: reserved	Local space, to be used for pipelined read Not used with SIS3100
13-8 00003F00		 0: register 1: direct VME access 2-3: not used 4: mapped VME access 6: SDRAM 7: DSP (SIS9200) 8-13: not used 	remote space: interpreted by SIS3100 (kind of address map)
7-0 000000FF	BE (request) EC (confirm)	01 Byte 0 02 Byte 1 04 Byte 2 08 Byte 3 F0 Byte 7-4	Byte enable is ignored during a register transfer, as a 32-bit word is transmitted the value should be 0x0F however. Two data words (64-bit) are expected if enable of Byte 7-4 is different from 0 This byte holds the error information on error confirmation (ECON)

Byte Enable Bits Summary

Byte Enable	Combination	Transfer length
00	invalid	
01	valid	byte
02	valid	byte
03	valid	double byte
04	valid	byte
05	invalid	
06	invalid	
07	invalid	
08	valid	byte
09	invalid	
0A	invalid	
0B	invalid	
0C	valid	double byte
0D	invalid	
0E	invalid	
0F	valid	quad byte
10	valid	eight byte transfer
	valid	eight byte transfer
FF	valid	eight byte transfer

NOTE:

The VME access width (D8/D16/D32/D64) is defined by the Byte enable bits

SIS1100/3100 PCI to VME

5.4 VME Access

5.4.1 VME D08 and BLT8 Access

During VME single byte transfers (D08 und BLT8) one valid Byte only is transferred over the optical link per 32-bit word.

Adress End Bits (a1 a0)	Byte Enable BE	PCI data bits Little Endian valid bits	Optical data bits Big Endian valid bits	VME data bus valid bits	VME DS1*	VME DS0*	VME A1	VME A2	VME Lword *
00	01	[7:0]	[31:24]	[15:8]	low	high	0 (a1)	a2	high
01	02	[15:8]	[23:16]	[7:0]	high	low	0 (a1)	a2	high
10	04	[23:16]	[15:8]	[15:8]	low	high	1 (a1)	a2	high
11	08	[31:24]	[7:0]	[7:0]	high	low	1 (a1)	a2	high

Assignment of Byte Enable Bits

* low active

During a block transfer (BT) 8-bit per 32-bit word are transferred also, the start address a1, a0 defines which data bits are valid during the first data word. During consecutive Bytes the data bits will become valid in following order: [31:24], [23:16], [15:8], [7:0] , [31:24],

5.4.2 VME D16 and BLT16 Access

During a VME double byte transfer (D16 and BLT16) two valid Bytes are transferred over the optical link per 32-bit word.

Assignment Byte Enable Bits

Address End Bits (a1 a0)	Byte Enable	Little Endian	Big Endian (Optical data bits)	VME data bus	VME DS1*	VME DS1*	VME A1	VME A2	VME Lword*
00	03	[7:0], [15:8]	[31:24], [23:16]	[15:0]	low	low	0 (a1)	a2	high
10	0C	[23:16], [31:24]	[15:8], [7:0]	[15:0]	low	low	1 (a1)	a2	high

Rule: a0 must be 0 if Byte Enable = 03 or 0C

The start address a1 defines which data bits of the first data word are valid. During consecutive double Bytes the data bits will become valid in following order: [31:16], [15:0], [31:16], [15:0],

5.4.3 VME D32 and BLT32 Access

All 32-bits on the optical data path are valid during a VME quad byte transfer (D32 and BLT32).

Assignment of Byte Enable Bits

Address End Bits (a1 a0)	Byte Enable	Little Endian	Big Endian (Optical data bits)	VME data bus	VME DS1*	VME DS1*	VME A1	VME A2	VME Lword*
00	0F	[7:0], [15:8],	[31:24], [23:16],	D[31:0]	low	low	0 (a1)	a2	low
		[23:16], [31:24]	[15:8], [7:0]						

Rule: a1, a0 must be 00 if Byte Enable = 0x0F

5.4.4 VME BLT64 Access

Two 32-bit data words are transmitted over the optical link during a multiplexed VME eight byte block transfer (MBLT64).

Assignment of Byte End	able Bits
------------------------	-----------

Address End Bits (a2, a1 a0)	Byte Enable	Little Endian	Big Endian (Optical data bits)	VME data bus	VME DS1*	VME DS1*
000	10ff	[7:0], [15:8], [23:16], [31:24]	1. datum [63:56], [55:48], A[31:1], [47:40], [39:32] LOWRD*		low	low
		[39:32], [47:40], [55:48], [63:56]	2. datum [31:24], [23:16], [15:8], [7:0]	D[31:0]		

Rule: a2, a1, a0 must be 000 if Byte Enable = BLT64

SIS1100/3100 PCI to VME

AM Protocol word

Function of AM Protocol Bits on VME Cycle

AM Protocol	15	14	11	10	9	8	7	[7:6]	[5:0]
VME		IRQ ACK							AM
		Cycle							[5:0]

* low active

IACK is invalid if the VME MAP table is used

5.5 Remote Register Transfer Protocol

SC_PROT: CTL:	0x1C xxx	(immer)			
		EOT: FIFO: BT: A64: AM: WR:	0 (not us 0 (not us 0 (not us 0 (not us 0 (not us 0 -> Rea	ed here) ed here) ed here) ed here)	1 -> Write
		REQ: CON: ECON:	00 10 11) postive Confirmation) negative Confirmation)
SP: BE:	0x00: 0x0F:	Register 32-bit tr		register a	ccess 32-bit always)

5.5.1 Write remote register

 $CTL: \qquad 0x04 \quad (REQ and WR)$

Request (from PCI)

Bit 31			Bit 0	Bit 31	Bit (
SC_PROT	CTL: 0x04	SP: 00	BE: 0F		
	Address A31-0				
data					
	ŭ	atu			

SC_PROT		CTL: 0x6 SP: 00					
or in case of error							
	SC_PROT	CTL: 0x7	SP: 00	EC			

Confirmation from SIS3100

5.5.2 Read remote register

 $CTL: \qquad 0x00 \quad (REQ and RD)$

Request (from PCI)

Bit 31			Bit 0	Bit 31
SC_PROT	CTL:0x00	SP: 00	BE: 0F	

Confirmation from SIS3100

Bit 0

	SC_PROT	CTL: 0x2	SP: 00				
data							
or in case of error							
	SC_PROT	CTL: 0x3	SP: 00	EC			

EC to be defined

5.6 Direct VME Bus Access Transfer Protocol

SC_PROT: CTL:	Ox1C xxx	(always) EOT: FIFO: BT: A64: AM: WR:	 0 -> no address increment; 1 -> address increment (relevant with BT only) 0 -> single cycle; 1 -> block transfer 0 -> addresse A31-0 only part of request protokol 1 -> address A63-32 and address A31-0 part of request protocol 0 -> AM Code not part of request protocol (default:AM=0x09;A32 non priv. data) 1 -> AM Code part of request protocol 0 -> Read: 1 -> Write
SP: BE:	0x01: xx	REQ: CON: ECON: direct V	00 (Bit17,16) 10 (Bit17,16; positive confirmation) 11 (Bit17,16; negative confirmation) /ME bus access

Bit 31

5.6.1 Single Word Write Direct VME Bus Access

CTL:	0x04	(REQ and WR)
CTL:	0x0C	(REQ and WR and AM)
CTL:	0x1C	(REQ and WR and AM and A64)

Request (from PCI)

 Bit 31
 Bit 0

 SC_PROT
 CTL
 SP: 01
 BE: 0F

 address modifier (with CTL:AM =1 only)

 Address A63-32 (with CTL:A64 =1 only)

 address A31-0

 data

Confirmation from SIS3100

Bit 0

	SC_PROT	CTL: 0x6 ?	SP: 01				
or in error case							
	SC_PROT	CTL: 0x7 ?	SP: 01	EC			

SIS1100/3100 PCI to VME

5.6.2 Single Word Read Direct VME Bus Access

CTL:	0x00	(REQ and RD)
CTL:	0x08	(REQ and RD and AM)
CTL:	0x18	(REQ and RD and AM and A64)

Request (from PCI)

Bit 31			Bit 0	Bit 31			Bit 0
SC_PROT	CTL	SP: 01	BE: 0F				
addres	address modifier (with CTL:AM =1 only)						
address A63-32 (with CTL:A64 =1 only)							
address A31-0							
				-			
				C DDOT	$CTI \cdot 0 - 2.9$	CD: 01	

SC_PROT	CTL: 0x2 ?	SP: 01			
data					

Confirmation from SIS3100

or in error case

 cuse							
SC_PROT	CTL: 0x3 ?	SP: 01	EC				

SIS1100/3100 PCI to VME

5.6.3 Block transfer Write Direct VME Bus Access

CTL:	0x24	(REQ, WR and BT)
CTL:	0x81	(END and EOT; arbitrary: WR and BT)

Request (from PCI)					Confirmation f	rom SIS3100	
Bit 31			Bit 0	Bit 31			Bit 0
SC_PROT	CTL	SP: 01	BE: 0F				
addre	ss nodifier (w	ith CTL:AM	=1 only)				
addre	ss A63-32 (wi	ith CTL:A64	=1 only)				
(Sta	rt) address A3	1-0 (4 Byte al	igned)				
	dat	um 1					
	dat	um 2					
	dat	um n					
SC_PROT	CTL : 0x81	SP: 01	BE: 0F				
				SC_PROT	CTL: 0x26 ?	SP: 01	

	SC_PROT	CTL: 0x26 ?	SP: 01	
or in error	case			
	SC_PROT	CTL: 0x27 ?	SP: 01	EC

Confirmation from SIS3100

Bit 0

5.6.4 Block transfer Read Direct VME Bus Access

CTL:	0x20	(REQ and BT)	
CTL:	0x22	(CONF and BT;	arbitrary: WR and BT)
CTL:	0x81	(END and EOT;	arbitrary: WR and BT)

Request (from PCI)

Bit 31

Bit 0

Bit 31

SC_PROT	CTL:0x20	SP: 01	BE: 0F				
address modifier (with CTL:AM =1 only)							
address A63-32 (with CTL:A64 =1 only)							
(Start) address A31-0 (4 Byte aligned)							
BC (byte count; 4-er steps: 4,8,)							

	SC_PROT	CTL: 0x22	SP: 01					
	datum 1							
	datum 2							
	datum n							
	BC (n x 4)							
	SC_PROT	CTL: 0x81 ?	SP: 01					
or in error	case							
	SC_PROT	CTL: 0x23 ?	SP: 01	EC				

5.7 Mapped VME Bus Access Transfer Protocol

SC_PROT: CTL:	0x1C xxx	 (immer) EOT: FIFO: 0 -> no address increment; 1 -> address increment (relevant with BT only) BT: 0 -> single cycle access; 1 -> block transfer A64: 0 (not relevant here) AM: 0 (not relevant here)
SP:	0x04:	WR:0 -> Read;1 -> WriteREQ:00(Bit17,16)CON:10(Bit17,16; positive confirmation)ECON:11(Bit17,16; negative confirmation)mapped VME bus access
BE :	xx	

5.7.1 Single Word Write mapped VME Bus Access

CTL: 0x04 (REQ and WR)

Request (from PCI)				Confirmation	from SIS3100		
Bit 31			Bit 0	Bit 31			Bit 0
SC_PROT	CTL	SP: 04	BE: 0F				
A2	A31-24 3-16: address (a	ss A31-0 4: not used and AM) map p irect to VME	ointer				
	da	atum					

	SC_PROT	CTL: 0x6 ?	SP: 04				
or in error case							
	SC_PROT	CTL: 0x7 ?	SP: 04	EC			

5.7.2 Single Word Read mapped VME Bus Access

 $CTL: \qquad 0x00 \quad (REQ and RD)$

Request (from PCI)					Confirmation f	from SIS3100	
Bit 31			Bit 0	Bit 31			Bit 0
SC_PROT	CTL	SP: 04	BE: 0F				
	addres	ss A31-0					
A2	3-16: address (a	: not used and AM) map por rect to VME	binter				
				SC_PROT	CTL: 0x2 ?	SP: 04	
					datu	m	
	or in error case						
				SC_PROT	CTL: 0x3 ?	SP: 04	EC

5.7.3 Block transfer Write mapped VME Bus Access

0x24 CTL: (REQ, WR and BT)

CTL: 0x81 (END and EOT; arbitrary: WR and BT)

Request (from PCI)					Confir	mation from	n SIS3100
Bit 31			Bit 0	Bit 31			
SC_PROT	CTL	SP: 01	BE: 0F				
A2	A31-24 3-16: address (a	ss A31-0 : not used and AM) map p rect to VME	ointer				
	dat	um 1					
	dat	um 2					
]				
datum n]				
SC_PROT	CTL: 0x81	SP: 04	BE: 0F				

Bit 31

	SC_PROT	CTL: 0x26 ?	SP: 04				
or in error case							
	SC_PROT	CTL: 0x27 ?	SP: 04	EC			

5.7.4 Blocktransfer Read mapped VME Bus Access

CTL:	0x20	(REQ and BT)
CTL:	0x22	(CONF and BT; arbitrary: WR and BT)
CTL:	0x81	(END and EOT; arbitrary: WR and BT)

Request (from PCI)

Confirmation from SIS3100

Bit 0

SC_PROT CTL: 0x22 SP: 04 --datum 1 datum 2 •• datum n BC (n x 4) SC_PROT CTL: 0x81 ? SP: 04 --or in error case SC_PROT CTL: 0x23 ? SP: 04 EC

Bit 31 Bit 0						
SC_PROT CTL: 0x20		SP: 04	BE: 0F			
	address A31-0					
A31-24: not used A23-16: address (and AM) map pointer						
A15-0: direct to VME						
BC (byte count; in steps of 4: 4,8,)						

SIS1100/3100 PCI to VME

5.8 SDRAM Transfer Protocol

SC_PROT: CTL:	0x1C xxx	(always)
		FIFO: 0 (not relevant)
		BT: 0 -> Einzelwortzugriff; 1 -> Block transfer
		A64: 0 (not relevant)
		AM: 0 (not relevant)
		WR: $0 \rightarrow Read;$ $1 \rightarrow Write$
		REQ:00(Bit17,16)CON:10(Bit17,16; positive confirmation)CON:11(Bit17,16; negative confirmation)
SP: BE:	0x06: 0x0F:	SDRAM 32-bit transfer (not used, register access is 32-bit wide by default)

5.8.1 Single Word Write SDRAM

 $CTL: \qquad 0x04 \quad (REQ and WR)$

	Request	(from PCI)			Confirmation	from SIS3100	
Bit 31			Bit 0	Bit 31			Bit 0
SC_PROT	CTL: 0x04	SP: 06	BE: 0F				
	addres	s A31-0					
	da	tum					

	SC_PROT	CTL: 0x6	SP: 06	
or in error	case			
	SC_PROT	CTL: 0x7	SP: 06	EC

Confirmation from SIS3100

5.8.2 Single Word Read SDRAM

 $CTL: \qquad 0x00 \quad (REQ and RD)$

Request (from PCI)

	-							
Bit 31			Bit 0	Bit 31				Bit 0
SC_PROT	CTL : 0x00	SP: 06	BE: 0F					
	addres	s A31-0						
				SC_PRO	Г	CTL: 0x2	SP: 06	
						datu	ım	
			or in e	rror case				
				SC_PRO	Г	CTL: 0x3	SP: 06	EC

Bit 31

Bit 0

Bit 0

5.8.3 Blocktransfer Write SDRAM

 $CTL: \qquad 0x24 \qquad (REQ, WR and BT)$

CTL: 0x81 (END and EOT; arbitrary: WR and BT)

Request (from PCI)

T CTL: 0x24 SP: 06 BE: 0F				
(Start) address A31-0 (4 Byte aligned)				
datum 1				
dat	um 2			
datum n				
PROT CTL: 0x81 SP: 06 BE: 0F				
	t) address A3 dat dat dat	t) address A31-0 (4 Byte al datum 1 datum 2 datum n		

	SC_PROT	CTL: 0x26	SP: 06	
or in error	case			
	SC_PROT	CTL: 0x27	SP: 06	EC

Confirmation from SIS3100

5.8.4 Blocktransfer Read SDRAM

CTL:	0x20	(REQ and BT)	
CTL:	0x22	(CONF and BT;	arbitrary: WR and BT)
CTL:	0x81	(END and EOT;	arbitrary: WR and BT)

.....

Bit 31

Request (from PCI)

Bit 31

Bit 31			Bit 0			
SC_PROT	C_PROT CTL: 0x20		BE: 0F			
(Star	(Start) Address A31-0 (4 Byte aligned)					
BC (byte count; 4-er steps: 4,8,)						

	SC_PROT	CTL: 0x22	SP: 06			
		data	ı 1			
		data 2				
	data n					
	BC (n x 4)					
	SC_PROT	CTL: 0x81	SP: 06			
or in error	case					
	SC_PROT	CTL: 0x23	SP: 06	EC		

Confirmation from SIS3100

6 SIS3100 Access through the Optical Interface

6.1 Control register space

Offset	Access	Function
0x000	R	Type-Identifier/Version register
0x004	R/W	Optical Status register
0x008	R/W	Optical Control register (reserved functions)
0x080	R/W	OPT-IN/OUT Register (FLAT/LEMO I/O)
0x084	R/W	OPT-IN-LATCH_IRQ Register
0x100	R/W	OPT-VME-Master Status/Control register
0x104	R/W	OPT-VME-Master Interrupt Status/Control register
0x200	R/W	OPT-VME-Slave Status/Control register
0x300	R/W	OPT-DSP Status/Control Register
0x400	R/W	OPT-VME-Address MAP register 0
0x404	R/W	OPT-VME-Address MAP register 1
0x408	R/W	OPT-VME-Address MAP register 2
0x7FC	R/W	OPT-VME-Address MAP register 0xff (255)

Control register space can be accessed with the routines:

```
int s3100_control_read(int p, int offset, u_int32_t* data)
int s3100_control_write(int p, int offset, u_int32_t data)
```

Note: long word access, the offset has to be long word aligned (0x0, 0x4, 0x8 ...)

6.1.1 Type-Identifier/Version register(0x0, read)

This read only register holds the SIS3100 board type to allow for a distinction between different interface types. The board type of the SIS3100 VME side is 2. Find below a table of board types (for the time being PCI and VME are the only implemented boards).

BIT	access	Name	Function
31-24 FF000000	RO	Firmware Version	1255
23-16 00ff0000	RO	Firmware Id.	1 = universal other Ids. for dedicated firmware
15-8 0000ff00	RO	Hardware Version	1255
7-0	RO	Identifier 0x02	1 = PCI/PLX Interface (SIS1100) 2 = VME Controller (SIS3100) 3 = CAMAC/FERA Controller (SIS5100) 4 = Readout system with LVD SCSI

Example: The current version reads 0x 01 01 01 02

6.1.2 Optical status register (0x4, r/w)

BIT	Name	access	Function	
31-16 FFFF0000	reserved	RO	0x0000	
15	BAND_ERROR	WR: sel clr	VSC: Out-of-Band Error (not reseted after powerup and Link reset)	
14	DISPAR_ERROR	WR: sel clr	VSC: Disparity Error (not reseted after powerup and Link reset)	
13	UORUN_ERROR	WR: sel clr	VSC: Under/Overrun error (not reseted after powerup and Link reset)	
12	TBERR_ERROR	WR: sel clr	VSC: Transmit Buffer Error(not reseted after powerup and Link reset)	
11 00000800			0	
10	LWORD_ERROR	WR: sel clr	Lword aligned error on optical interface	
9			0	
8			0	
7 00000080	REC_VIOLATION		0 (reserved)	
6 00000040	SEMA_CHG		0 (reserved)	
5	INH_CHG	WR: sel clr	INHIBIT signal has changed (to inhibit)	
4	SYNCH_CHG	WR: sel clr	RX/TX_SYNCH has changed	
3	CONFIGURED	RO	allows remote side to detect RESET or power up (1 after reset or power up)	
2	INHIBIT	RO	Transfer to remote side locked (TRANS_WAIT_FLAG_L) remote has send xoff or TRANSMIT_LINK_WAIT is active	
1	TX_SYNCH	RO	Optical remote receiver is synchronised (TRANSMIT_LINK_OK)	
00000001	RX_SYNCH	RO	Optical receiver is synchronised (RECEIVE_LINK_OK)	

6.1.3 Optical control register (0x8, r/w)

This register is implemented as a selective J/K register. The user has to avoid to write a 1 to the clear and set bit of the same output at the same time, as an undefined toggle state may result.

The functions are reserved. They will be used in applications like VME to VME coupling.

Bit	Write Function	Read Function
31:16	Clear reserved bit [15:0]	0x0000
15:0	Set reserved bit [15:0]	Status reserved bit [15:0]

6.1.4 OPT-IN/OUT Register (0x80,read /write)

This register is under control of the Input/Output option (as far as installed on the given SIS3100).

On read access the status of the outputs and the current level on the inputs can be obtained, on write access the level of the outputs can be set. The register is implemented as a selective J/K register, the specific function (set/clear output) is executed by writing a 1 to the corresponding bit location, writes with a 0 have no effect. The user has to avoid to write a 1 to the clear and set bit of the same output at the same time, as an undefined toggle state may result.

Bit	Write Function	Read Function
31	no function	0
30	Generate pulse LEMO_OUT3	0
29	Generate pulse LEMO_OUT2	0
28	Generate pulse LEMO_OUT1	0
27	Generate pulse FLAT_OUT4	0
26	Generate pulse FLAT_OUT3	0
25	Generate pulse FLAT_OUT2	0
24	Generate pulse FLAT_OUT1	0
23	no function	0
22	Clear LEMO_OUT3	Status LEMO_IN3
21	Clear LEMO_OUT2	Status LEMO_ IN2
20	Clear LEMO_OUT1	Status LEMO_ IN1
19	Clear FLAT_OUT4	Status FLAT_IN4
18	Clear FLAT_OUT3	Status FLAT_IN3
17	Clear FLAT_OUT2	Status FLAT_IN2
16	Clear FLAT_OUT1	Status FLAT_ IN1
15	no function	0
14	no function	0
13	no function	0
12	no function	0
11	no function	0
10	no function	0
9	no function	0
8	no function	0
7	no function	0
6	Set LEMO_OUT3	Status LEMO_OUT3
5	Set LEMO_OUT2	Status LEMO_OUT2
4	Set LEMO_OUT1	Status LEMO_OUT1
3	Set FLAT_OUT4	Status FLAT_OUT4
2	Set FLAT_OUT3	Status FLAT_OUT3
1	Set FLAT_OUT2	Status FLAT_OUT2
0	Set FLAT_OUT1	Status FLAT_OUT1

pulse length : 12.5ns pulse polarity: if SET_OUTx is set then the polarity is inverted

6.1.5 OPT-IN-LATCH_IRQ Register (0x84,read /write)

This register is under control of the Input/Output option (as far as installed on the given SIS3100).

On read access the status of the outputs and the current level on the inputs can be obtained, on write access the level of the outputs can be set. The register is implemented as a selective J/K register, the specific function (set/clear output) is executed by writing a 1 to the corresponding bit location, writes with a 0 have no effect. The user has to avoid to write a 1 to the clear and set bit of the same output at the same time, as an undefined toggle state may result.

Bit	Write Function	Read Function
31	no function	0
30	Clear LEMO_IN3_LATCH bit	Status LEMO_IN3_LATCH bit
29	Clear LEMO_IN2_LATCH bit	Status LEMO_ IN2_LATCH bit
28	Clear LEMO_IN1_LATCH bit	Status LEMO_ IN1_LATCH bit
27	Clear FLAT_ IN4_LATCH bit	Status FLAT_ IN4_LATCH bit
26	Clear FLAT_ IN3_LATCH bit	Status FLAT_ IN3_LATCH bit
25	Clear FLAT_ IN2_LATCH bit	Status FLAT_ IN2_LATCH bit
24	Clear FLAT_ IN1_LATCH bit	Status FLAT_ IN1_LATCH bit
23	no function	0
22	Clear LEMO_IN3_IRQ Enable bit	Status LEMO_IN3
21	Clear LEMO_IN2_IRQ Enable bit	Status LEMO_IN2
20	Clear LEMO_IN1_IRQ Enable bit	Status LEMO_IN1
19	Clear FLAT_ IN4_IRQ Enable bit	Status FLAT_IN4
18	Clear FLAT_ IN3_IRQ Enable bit	Status FLAT_IN3
17	Clear FLAT_ IN2_IRQ Enable bit	Status FLAT_IN2
16	Clear FLAT_ IN1_IRQ Enable bit	Status FLAT_IN1
15	1 Shot: IRQ_UPDATE	0
14	no function	Status LEMO_IN3_IRQ bit
13	no function	Status LEMO_ IN2_IRQ bit
12	no function	Status LEMO_ IN1_IRQ bit
11	no function	Status FLAT_IN4_IRQ bit
10	no function	Status FLAT_ IN3_IRQ bit
9	no function	Status FLAT_IN2_IRQ bit
8	no function	Status FLAT_IN1_IRQ bit
7	no function	0
6	Set LEMO_IN3_IRQ Enable bit	Status LEMO_ IN3_IRQ Enable bit
5	Set LEMO_IN2_IRQ Enable bit	Status LEMO_ IN2_IRQ Enable bit
4	Set LEMO_IN1_IRQ Enable bit	Status LEMO_ IN1_IRQ Enable bit
3	Set FLAT_IN4_IRQ Enable bit	Status FLAT_ IN4_IRQ Enable bit
2	Set FLAT_IN3_IRQ Enable bit	Status FLAT_ IN3_IRQ Enable bit
1	Set FLAT_ IN2_IRQ Enable bit	Status FLAT_ IN2_IRQ Enable bit
0	Set FLAT_IN1_IRQ Enable bit	Status FLAT_IN1_IRQ Enable bit

for PCI-Doorbell IRQ generation see 6.1.7 OPT-VME-Interrupt Status/Control register (0x104,read /write)

6.1.6 OPT-VME-Master Status/Control register (0x100,read/write)

The control register is in charge of the control of most of the basic properties of the SIS3100 board in write access. It is implemented via a selective J/K register, a specific function is enabled by writing a 1 into the set/enable bit, the function is disabled by writing a 1 into the clear/disable bit (which location is 16-bit higher in the register). An undefined toggle status will result from setting both the enable and disable bits for a specific function at the same time.

Bit	Write Function	Read Function
31	Clear SYSTEM VME BERR TIMER BIT1	0
30	Clear SYSTEM VME BERR TIMER BIT0	0
29	Clear LONG TIMER BIT1	0
28	Clear LONG TIMER BIT0	0
27	no function	0
26	no function	0
25	no function	0
24	no function	0
27	no function	0
26	no function	0
25	no function	0
24	no function	0
23	Switch off user LED	0
22	Clear VME REQUESTER TYPE BIT	0
21	Clear VME_REQ_LEVEL BIT1	0
20	Clear VME_REQ_LEVEL BIT0	0
19	Clear POWER_ON_RESET bit	0
18	Clear LEMO_OUT_RESET bit	0
17	Clear VME_SYSRESET bit	0
16	Clear VME System Controller Enable bit (*2)	Status VME System Controller (*3)
15	Set SYSTEM VME BERR TIMER BIT1	Status SYSTEM VME BERR TIMER BIT1
14	Set SYSTEM VME BERR TIMER BIT0	Status SYSTEM VME BERR TIMER BIT0
13	Set LONG TIMER BIT1	Status LONG TIMER BIT1
12	Set LONG TIMER BIT0	Status LONG TIMER BIT0
11	no function	0
10	no function	0
9	no function	0
8	no function	0
7	Switch on user LED	Status user LED
6	Set VME REQUESTER TYPE BIT	Status VME REQUESTER TYPE BIT
5	Set VME_REQ_LEVEL BIT1	Status VME_REQ_LEVEL BIT1
4	Set VME_REQ_LEVEL BIT0	Status VME_REQ_LEVEL BIT0
3	Set POWER_ON_RESET bit (*6)	Status POWER_ON_RESET
2	Set LEMO_OUT_RESET bit (*5)	Status LEMO_OUT_RESET bit
1	Set VME_SYSRESET bit (*4)	Status VME_SYSRESET bit
0	Set VME System Controller Enable bit (*2)	Status VME System Controller Enable bit

Notes:

(*2) is ored with the Jumper J10/1-2 ; Caution: if the jumper is not installed and the VME system controller functionality is enabled by software, the 16 MHz clock is not active during power up. This may result in problems with peculiar VME slave designs that use the VME clock to initialise on board logic.

(*3) is set if Jumper J10/1-2 is inserted or if VME System Controller Enable bit is set (*4) if Jumper J90/11-12 is inserted and VME_SYSRESET bit is set then VME_SYSRESET is issued at power up

(*5) if Jumper J90/3-4 is inserted and the LEMO_OUT_RESET bit is set then LEMO_OUT_RESET is set (ored upon POWER_ON_RESET if Jumper J90/5-6 is inserted (*6) if Jumper J90/9-10 is inserted and the POWER_ON_RESET bit is set, the SIS3100 generates a power up Reset !!!)

Explanation/function of bit combinations:

SYSTEM VME BERR TIMER BIT1	SYSTEM VME BERR TIMER BIT0	VME Bus Error after
0	0	1 μs (default)
0	1	5 μs
1	0	10 µs
1	1	80 µs

Note: The default value of 1 μ s will be fine with most of VME slaves on the market, there are peculiar cards which will respond to a VME cycle much slower however also.

LONG TIMER BIT1	LONG TIMER BIT0	LONG Timeout after
0	0	1ms (default)
0	1	5ms
1	0	10ms
1	1	20ms

LONG Timeout: arbitration timeout, no reply from current VME master or VME bus mastership not granted

VME_REQ_LEVEL BIT1	VME_REQ_LEVEL BIT0	VME Bus Request Level
0	0	BR3 (highest Level, default)
0	1	BR2
1	0	BR1
1	1	BR0

VME REQUESTER TYPE BIT	VME Bus Requester Type
0	Release on Request (default)
1	Release when Done

6.1.7 OPT-VME Interrupt Status/Control register (0x104,read /write)

The VME interrupts are enabled with their corresponding bit in this register. In addition the user can check on the status of the interrupt sources.

Bit	Write Function	Read Function
31		Status VME IRQ 7 on VME BUS
30		Status VME IRQ 6 on VME BUS
29		Status VME IRQ 5 on VME BUS
28		Status VME IRQ 4 on VME BUS
27		Status VME IRQ 3 on VME BUS
26		Status VME IRQ 2 on VME BUS
25		Status VME IRQ 1 on VME BUS
24		
23	Clear VME IRQ 7 Enable Bit	Status VME IRQ 7 bit
22	Clear VME IRQ 6 Enable Bit	Status VME IRQ 6 bit
21	Clear VME IRQ 5 Enable Bit	Status VME IRQ 5 bit
20	Clear VME IRQ 4 Enable Bit	Status VME IRQ 4 bit
19	Clear VME IRQ 3 Enable Bit	Status VME IRQ 3 bit
18	Clear VME IRQ 2 Enable Bit	Status VME IRQ 2 bit
17	Clear VME IRQ 1 Enable Bit	Status VME IRQ 1 bit
16	Clear VME IRQ Enable Bit	0
15	1 Shot: IRQ_UPDATE	0
4		0
13		0
12		0
11		0
10		0
9		0
8		0
7	Set VME IRQ 7 Enable Bit	Status VME IRQ 7 Enable Bit
6	Set VME IRQ 6 Enable Bit	Status VME IRQ 6 Enable Bit
5	Set VME IRQ 5 Enable Bit	Status VME IRQ 5 Enable Bit
4	Set VME IRQ 4 Enable Bit	Status VME IRQ 4 Enable Bit
3	Set VME IRQ 3 Enable Bit	Status VME IRQ 3 Enable Bit
2	Set VME IRQ 2 Enable Bit	Status VME IRQ 2 Enable Bit
1	Set VME IRQ 1 Enable Bit	Status VME IRQ 1 Enable Bit
0	Set VME IRQ Enable Bit	Status VME IRQ Enable Bit

The power up default value reads 0x 00000000

Status internal VME IRQ 1 = Status VME IRQ 1 Enable Bit and Status VME IRQ 1 on VME BUS Status VME IRQ 1 = Status internal VME IRQ 1

PCI-Doorbell:

The leading edge of an IRQ issues an optical request, which writes the IRQ status in the doorbell register of the PLX PCI bridge chip.

With the command "IRQ_UPDATE" (write 0x8000 to OPT-IN-LATCH_IRQ Register or to OPT-VME-Interrupt Status/Control register) a pending IRQ is disabled shortly (if more than one IRQs are pending) what results in another leading edge generated by the other pending IRQ with consecutive doorbell register update.

Doorbell register bit	Function
31:16	0 (reserved)
15	0 (reserved)
14	Status LEMO_ IN3_IRQ bit
13	Status LEMO_ IN2_IRQ bit
12	Status LEMO_ IN1_IRQ bit
11	Status FLAT_IN4_IRQ bit
10	Status FLAT_IN3_IRQ bit
9	Status FLAT_IN2_IRQ bit
8	Status FLAT_IN1_IRQ bit
7	Status VME IRQ 7 bit
6	Status VME IRQ 6 bit
5	Status VME IRQ 5 bit
4	Status VME IRQ 4 bit
3	Status VME IRQ 3 bit
2	Status VME IRQ 2 bit
1	Status VME IRQ 1 bit
0	0 (reserved)

SIS3100 PCI Doorbell IRQ blockdiagram

6.1.8 OPT-VME-Slave Status/Control register (0x200, read /write)

This register controls the VME slave address of the SIS3100. The SIS3100 can either use geographical addressing (in conjunction with a VME64x backplane), use an emulated geographical address (via jumper array J10) or the base address defined by this control register. Note that the register is implemented in J/K style.

The VME slave is disabled by default.

Bit	Write Function	Read Function
31	Clear Address Offset Bit A31	Status of GA4
30	Clear Address Offset Bit A30	Status of GA3
29	Clear Address Offset Bit A29	Status of GA2
28	Clear Address Offset Bit A28	Status of GA1
27	Clear Address Offset Bit A27	Status of GA0
26	Clear Enable VME Slave_OPT bit	Status of GAP
25	Clear Disable VME Slave_GA bit	0
24	no function	0
27:16	no function (reserved)	0
15	Set Address Offset Bit A31	Status Address Offset Bit A31
14	Set Address Offset Bit A30	Status Address Offset Bit A30
13	Set Address Offset Bit A29	Status Address Offset Bit A29
12	Set Address Offset Bit A28	Status Address Offset Bit A28
11	Set Address Offset Bit A27	Status Address Offset Bit A27
10	Set Enable VME Slave_OPT bit	Status Enable VME Slave_OPT bit
9	Set Disable VME Slave_GA bit	Status Disable VME Slave_GA bit
8	no function	0
7:0	no function (reserved)	0

Summary on VME slave address setting :

The VME slave base address is defined by the offset bits A[31:27] if the "Enable VME Slave_OPT bit" is set to 1

The VME slave address is defined by the GA lines (jumper J10 repsectively) if the VME Slave_OPT bit" is set to 0. GA4 is compared to A31, . GA0 to A27.

The slave is disabled if all GA lines (GAP, GA[4:0]) are 0 (corresponding jumpers on J10 open respectively). This is the factory default.

The VME slave is disabled while the SIS3100 is VME master.

The VME Slave_GA bit: disables hardware decoding of the slave port.

6.1.9 OPT-DSP Status/Control Register (0x300, r/w)

The DSP control register is in charge of the control of several properties of the SIS9200 DSP add on option (if installed, can be checked with bit-24 of opt-dsp status/control register). It is implemented via a selective J/K register, a specific function is enabled by writing a 1 into the set/enable bit, the function is disabled by writing a 1 into the clear/disable bit (which location is 16-bit higher in the register). An undefined toggle status will result from setting both the enable and disable bits for a specific function at the same time.

Bit	Write Function	Read Function
31	Clear Control 15 *	DSP FLAG 3 Status
30	Clear Control 14 *	DSP FLAG 2 Status
29	Clear Control 13 *	DSP FLAG 1 Status
28	Clear Control 12 *	DSP FLAG 0 Status
27	Clear OPT_DSP_BOOT_CTRL_ENABLE *	0 (Reserve)
26	Clear Control 10 *	0 (Reserve)
25	Clear OPT_DSP BOOT EPROM *	0 (Reserve)
24	Clear OPT_DSP RUN *	DSP available
23	Clear Control 7 *	0 (Reserve)
22	Clear Control 6 *	0 (Reserve)
21	Clear Control 5 *	0 (Reserve)
20	Clear Control 4 *	0 (Reserve)
19	Clear Control 3 *	0 (Reserve)
18	Clear Control 2 *	0 (Reserve)
17	Clear Control 1 *	0 (Reserve)
16	Clear Control 0 *	0 (Reserve)
15	Set Control 15	Status Control 15
14	Set Control 14	Status Control 14
13	Set Control 13	Status Control 13
12	Set Control 12	Status Control 12
11	Set OPT_DSP_BOOT_CTRL_ENABLE	Status OPT_DSP_BOOT_CTRL_ENABLE
10	Set Control 10 (reserved)	Status Control 10
9	Set OPT_DSP_BOOT_EPROM	Status OPT_DSP_EPROM
8	Set OPT_DSP_RUN	Status OPT_DSP_RUN
7	Set Control 7 (reserved)	Status Control 7
6	Set Control 6 (reserved)	Status Control 6
5	Set Control 5 (reserved)	Status Control 5
4	Set Control 4 (reserved)	Status Control 4
3	Set Control 3 (reserved)	Status Control 3
2	Set Control 2 (reserved)	Status Control 2
1	Set Control 1 (reserved)	Status Control 1
0	Set Control 0 (reserved)	Status Control 0

Summary of DSP control bits:

OPT_DSP_BOOT_CTRL_ENABLE:

- 0 : DSP_BOOT_EPROM and DSP_RUN are controlled from VME Slave
- 1 : DSP_EPROM and DSP_RUN are controlled from Optical interface
 - (OPT_DSP BOOT EPROM , OPT_DSP RUN)

OPT_DSP BOOT EPROM :

- 0 : DSP boots from external SRAM
- 1 : DSP boots from Flasheprom

OPT_DSP RUN :

- 0 : DSP is in Reset state
- 1 : DSP is in Run state
- set from 0 to 1: DSP will boot

6.1.10 OPT-VME-Address MAP register 0..255 (0x400..0x7FC,read/write)

Bit	Function
31	VME A31
16	VME A16
15	0
8	0
7	0
6	0
5	VME AM5
4	VME AM4
3	VME AM3
2	VME AM2
1	VME AM1
0	VME AM0

During a mapped VME transfer the protocol addresses [31:24] are ignored. They are used to address the VME address map.

6.2 OPT-Sharc space

This address space (through the optical interface) is occupied by the SIS9200 SHARC DSP (where installed).

Offset (byte_adr)	Access	Function	
0x0100 0000	R/W	(Boot) FLASH PROM ; 4Mbit (512K Byte)	
to		- only one Byte is valid: data D7:D0 $\leftarrow \rightarrow$ FLASH Prom D7:D0	
0x11F FFFC		- Offset_A20 : Offset_A2 $\leftarrow \rightarrow$ FLASH Prom A18:A0	
0x0120 0000	R/W	Extern DSP SRAM; 256 K x 48bit	
to		- data D31:D0 $\leftarrow \rightarrow$ SHARC D47:D16	
0x012F FFFC			
0x0130 0000	R/W	D48 Register	
(to		- data D15:D0 $\leftarrow \rightarrow$ SHARC D15:D0	
0x013F FFFC)			

This address space can be accessed with the routines:

```
int s3100_sharc_write(int p_sharc, u_int32_t byte_adr, u_int32_t* ptr_data,
u_int32_t num_of_lwords)
int s3100_sharc_read(int p_sharc, u_int32_t byte_adr, u_int32_t* ptr_data,
u_int32_t num_of_lwords)
```

p_sharc ist descriptor SIS3100sharc !!

6.3 OPT-SDRAM space

This address space exists through the optical interface if the SDRAM option is installed.

Offset (byte_adr)	Access	Function
0x0000 0000x0	R/W	Start address of optional SDRAM
to		
0x03ff fffc		End address of 64 Mbyte SDRAM
or		
0x07ff fffc		End address of 128 Mbyte SDRAM
or		
0x0fff fffc		End address of 256 Mbyte SDRAM

SDRAM can be accessed with the routines:

int s3100_sdram_write(int p_sdram, u_int32_t byte_adr, u_int32_t* ptr_data, u_int32_t num_of_lwords) int s3100_ sdram _read(int p_sdram, u_int32_t byte_adr, u_int32_t* ptr_data, u_int32_t num_of_lwords)

with p_sdram being the descriptor for the SIS3100sdram

7 Access through VME slave

VME Slave Base address is controled through the OPT-VME-Slave Status/Control register (refer to section 0).

7.1 VME Slave Address Map

The SIS3100 resources and their locations are listed in the table below.

Offset (VME addr)	R/W	Access	Function
0x0000 0000	R	D32	Type-Identifier/Version register
0x0000 0010	R/W	D32	VS-DSP Control/Status register
0x0100 0000	R/W	D32	(Boot) FLASH PROM ; 4Mbit (512K x8)
to			- only one Byte is valid
0x11F FFFC			- data D7:D0 $\leftarrow \rightarrow$ FLASH Prom D7:D0
			- Offset_A20 : Offset_A2 $\leftarrow \rightarrow$ FLASH Prom A18:A0
0x0120 0000		D32	Extern DSP SRAM; 256 K x 48bit
to		BLT32	- data D31:D0 $\leftarrow \rightarrow$ SHARC D47:D16
0x012F FFFC		MBLT64	
0x0130 0000		D32	D48 Register
(to		(BLT32)	- VME D15:D0 $\leftarrow \rightarrow$ SHARC D15:D0
0x013F FFFC)		(MBLT64)	
0x0400 0000		D32	Start addreess of optional SDRAM
to		BLT32	
0x07FF FFFC		MBLT64	End address of 64 Mbyte SDRAM

An address space of 64 MBytes is reserved for the SDRAM option. To access larger memories a page offset register is yet to be implemented.

7.2 Type-Identifier/Version register(0x0, read)

This read only register holds the SIS3100 board type to allow for a distinction between different interface types. The board type of the SIS3100 VME side is 2. Find below a table of board types (for the time being PCI and VME are the only implemented boards).

BIT	access	Name	Function
31-24 FF000000	RO	Firmware Version	1255
23-16 00ff0000	RO	Firmware Id.	1 = universal other Ids. for dedicated firmware
15-8 0000FF00	RO	Hardware Version	1255
7-0	RO	Identifier 0x02	1 = PCI/PLX Interface (SIS1100) 2 = VME Controller (SIS3100) 3 = CAMAC/FERA Controller (SIS5100) 4 = Readout system with LVD SCSI

Example: The current version reads 0x 02 01 01 02

7.3 VS-DSP Status/Control Register (0x10, r/w)

The DSP control register is in charge of the control of several properties of the SIS9200 DSP add on option if installed. It is implemented via a selective J/K register, a specific function is enabled by writing a 1 into the set/enable bit, the function is disabled by writing a 1 into the clear/disable bit (which location is 16-bit higher in the register). An undefined toggle status will result from setting both the enable and disable bits for a specific function at the same time.

Bit	Write Function	Read Function
31	reserved	DSP FLAG 3 Status
30	reserved	DSP FLAG 2 Status
29	reserved	DSP FLAG 1 Status
28	reserved	DSP FLAG 0 Status
27	reserved	0 (Reserve)
26	reserved	0 (Reserve)
25	Clear VS_DSP BOOT EPROM *	0 (Reserve)
24	Clear VS _DSP RUN *	DSP available
23	Clear Control 7 *	0 (Reserve)
22	Clear Control 6 *	0 (Reserve)
21	Clear Control 5 *	0 (Reserve)
20	Clear Control 4 *	0 (Reserve)
19	Clear Control 3 *	0 (Reserve)
18	Clear Control 2 *	0 (Reserve)
17	Clear Control 1 *	0 (Reserve)
16	Clear Control 0 *	0 (Reserve)
15	reserved	0 (Reserve)
14	reserved	0 (Reserve)
13	reserved	0 (Reserve)
12	reserved	0 (Reserve)
11	reserved	Status OPT_DSP_BOOT_CTRL_ENABLE
10	reserved	0 (Reserve)
9	Set VS _DSP_BOOT_EPROM	Status VS _DSP_EPROM
8	Set VS _DSP_RUN	Status VS _DSP_RUN
7	Set Control 7 (reserved)	Status Control 7
6	Set Control 6 (reserved)	Status Control 6
5	Set Control 5 (reserved)	Status Control 5
4	Set Control 4 (reserved)	Status Control 4
3	Set Control 3 (reserved)	Status Control 3
2	Set Control 2 (reserved)	Status Control 2
1	Set Control 1 (reserved)	Status Control 1
0	Set Control 0 (reserved)	Status Control 0

OPT_DSP_BOOT_CTRL_ENABLE: (setable only from Optical Interface)

- 0 : DSP_BOOT_EPROM and DSP_RUN are controled from VME Slave (VS_DSP BOOT EPROM, VS_DSP RUN)
- 1 : DSP_EPROM and DSP_RUN are controled from Optical interface

VS_DSP BOOT EPROM :

- 0 : DSP boots from external SRAM
- 1 : DSP boots from Flasheprom

VS_DSP RUN :

- 0 : DSP is in Reset state
- 1 : DSP is in Run state
- set from 0 to 1: DSP will boot

8 VME side LEDs

The SIS3100 has 10 front panel and 8 surface mounted printed circuit board (PCB) LEDs to visualise part of the units status. While the front panel LEDs allow the user to monitor part of the boards activities, the PCB LEDs were implemented for hardware and firmware debugging purposes mainly.

8.1 Front panel LEDs

The SIS3100 has 10 front panel and 8 surface mounted printed circuit board (PCB) LEDs to visualise part of

LED	Color	Function
А	vallow	Access (to VME slave port)
М	yellow	Master
Р	red	Power
S	Ieu	Sequencer activity
R	aroon	Ready (logic configured)
L	green	Link up
LU	aroon	Link data up (PCI to VME)
LD	green	Link data down (VME to PCI)
U	aroon	User
DU	green	DSP user

The arrangement of the front panel LEDs on the upper part of the front panel is shown in the sketch below.

8.1.1 Explanation of front panel LEDs

LED	Description
А	VME access to VME slave port of SIS3100
М	VME master, lit whenever the SIS3100 accesses the VME bus
Р	Power, signals presence of +5 V supply voltage

S	Signals activity of the SIS3100 sequencer
R	Ready, lit when on board logic is configured (off during power up LED self test)
L	Link up, lit when connection to PCI side (or loopback connection) is established
LU	Link data up, lit when data are send (and LED link up lit),
	special case as described below when LED link up is off
LD	Link data down, lit when link data are received (and LED link up lit),
	special case as described below when LED link up is off
U	User LED, to be set and cleared under user program control
DU	DSP user LED, to be set and cleared under optional DSPs user program

8.1.2 Special case: LED Link up off

In standard operation (i.e. VME and PCI side powered an connected with optical fiber) the LED Link up off condition signals a problem on the Gigabit link connection. The LEDs Link data up and Link data down are used to signal the problem cause under this condition. Link data up is lit in case of a problem on the transmitter side, link data down is lit in case of a problem on the receiver side. A short loopback cable (with proven reliability) is useful to track down the problem source (fiber, VME side or PCI side)

8.2 PCB LEDs

The 8 red PCB LEDs D651-D658 are mounted close to the front panel on the upper edge of the SIS3100. The reflect the status of the Vitesse serialiser/deserialiser (SERDES) chip.

LED	Function
D651	valid data
D652	valid KChar
D653	idle detect
D654	resync
D655	lossync
D656	norun error
D657	band error
D658	dispar error

9 SIS3100 Jumpers

The SIS3100 card has two jumper arrays with 8 jumpers each. Array J10 controls VME slave port access and VME system controller functionality, J90 handles reset conditions mainly. A more detailed description of the two arrays and their factory default settings is given in the tables below.

9.1 J10

	Function	Factory default setting
J10	VME system controller	closed
Ο	unused	open
	GAP	open
	GA0	open
	GA1	open
	GA2	open
	GA3	open
	GA4	open

9.2 J90

	Function	Factory default setting
06	unused	open
ŏ	connect FPGA reset to LEMO reset output	open
	connect power on reset to LEMO reset output	open
	connect NIM reset input to execution of SIS3100 power on reset	closed
	power on reset	open
	VME SYSRESET initiates power on reset of SIS3100	open
	FPGA reset results in VME SYSRESET	closed
	power on reset of SIS3100 results in VME SYSRESET	closed

Notes:

1.) some jumper combinations may result in a power up reset deadlock

2.) Typical Master/slave SYSRESET setting

While it is typical for a VME master to issue SYSRESET upon power up (jumper 8 of J90 closed) it is more suited for a VME slave to execute a power on reset as soon as the VME SYSRESET condition is detected (jumper 6 of J90 closed).

9.2.1 JP_DSP

If the jumper JP_DSP is opened, the JTAG lines TDI and TDO of the installed SIS9200 DSP piggy will be connected to the main board and the programmable components on the card will become part of the SIS3100 JTAG chain. The default setting is jumper closed (i.e. closed TDI, TDO chain on the SIS3100 board).

10 VME system controller

The SIS3100 can act as VME system controller. The 16 MHz VME system clock is generated by the SMD oscillator U10. and enabled by jumper 1 of jumper array J10.

Note: The user has to ensure, that the system clock is generated once per crate only. A VME diagnosis module like the VDIS or a measurement with a VME bus extender can be used to check, whether a particular CPU or interface generates system clock (with all other interfaces/CPUs unplugged from the VME backplane. Some VME slave modules may use the system clock to initialize on board resources, this mechanism may fail if the system clock is generated by more than one board in the crate. The system clock can also be activated by software if the jumper is not in place. In this case the user has to be aware, that no SYSCLOCK will be generated during the power up phase of the crate. A SYSRESET may be required by certain VME slaves for proper initialization of on board circuitry after SIS3100 SYSCLOCK generation was enabled.

11 SIS1100 Hardware Description

11.1 PCI Front panel

The SIS1100 uses a standard PCI front panel. The front panel as seen from the rear of the PC is shown in the graph below. The front panel to the left is the version with I/O option, to the right hand side shows the standard version.

11.2 SIS1100 LEDs

The two boards that form the SIS1100 have several LEDs to assist the user in case of problems. The front panel LEDs can be seen from the rear of the (closed) PC when the SIS1100 is installed, the PCB LEDs of the SIS1100-OPT and the SIS1100-CMC carrier can be seen if the PC is open.

11.2.1 Front panel LEDs

The green front panel LEDs of the SIS are grouped in 3 rows of 2 LEDs each. Find below a table of the LEDs as seen from the rear of the module. The LEDs are actually part of the SIS1100-OPT card.

Left	Right
Access	Link up
Link data up	Link data down
User	reserved

The function of the LEDs is explained in a little more detail in the table below.

LED	Function
Access	Lit with access to the SIS1100-OPT carrier board
Link up	Signals link connection to SIS3100 or other link partner
Link data up	Link data are being transmitted by SIS1100-OPT special case as described in section 8.1.2 when LED link up is off
Link data down	Link data are being received by SIS1100-OPT special case as described in section 8.1.2 when LED link up is off
User	To be set and cleared under user program control
reserved	

11.2.2 SIS1100-OPT PCB LEDs

The SIS1100-OPT carrier board has 8 SMD LEDs. The have the same function and names as the corresponding LEDs on the SIS3100. Refer to section 8.2 for a detailed description.

11.2.3 SIS1100-CMC PCB LEDs

The SIS1100-CMC carrier board has 4 SMD LEDs.

11.3 SIS1100 Input termination

The input termination of the two LEMO inputs can be configured for 50 Ω and 1 K Ω with the four jumpers of jumper array JP770. The jumper array is located on the component side of the SIS1100-OPT, i.e. the board will have to be removed from the CMC carrier board for reconfiguration. The partial placement plan below shows the front panel section of the

SIS3100-OPT (component side facing you, connectors to the right hand side. The jumper array and the function of its 4 positions are illustrated below. The factory default is both inputs configured for 50 Ω termination, i.e. lowest jumper (next to text JP770 and third jumper set).

SIS1100/3100 PCI to VME

12 Appendix

12.1 Power consumption

The SIS3100 is a +5 V single supply design. On board voltages other than +5V are generated by linear regulators or DC/DC converters. A list with the used components can be found below.

Component designator	Voltage	Component	Powered components
U2	2.5 V	LM1084IT	FPGAs
U3	3.3 V	LM1084IT	link medium/SERDES/drivers
U5	-5 V	TMH0505S	flat cable in/outputs (ECL)
U6	-5 V	TMH0505S	LEMO in/outputs (NIM)

Note: U5 and U6 will be stuffed when required by the given I/O configuration only

The power consumption will depend on installed options and board activity. The figures below are worst case estimates/measurements.

U in V	Current in A	Configuration
+5 V		Base configuration
+5 V	2,1	Base configuration with front panel I/Os
+5 V	2,2	Base configuration with front panel I/Os and 64 MB
+5 V	2,4	Base configuration with front panel I/Os, 64 MB and DSP

12.2 I/O option Jumper description

A description of the jumpers can be found in the following subsections. Please note, that some of the jumpers may not be used with the actual hardware configuration of your board.

12.2.1 JP710

Termination of flat cable inputs (ECL or high impedance TTL). Refer to the schematic for the flat cable I/O section for an overview on the complete configuration options (see section 12.2.3).

12.2.2 JP770

Termination of LEMO inputs (NIM or 50 Ω TTL). Refer to the schematic for LEMO I/O (see section 12.2.4).

SIS1100/3100 PCI to VME

12.2.3 Schematic of flat I/O connector

12.2.4 Schematic of LEMO I/O section

12.3 Boot mechanisms

The firmware of the SIS3100 can be loaded to the boards FPGAs by two different mechanisms. Normally the user will use the factory installed firmware, which will be loaded at power up by default, in some cases it may be of interest however to load special designs or to upgrade the firmware to use extended functionality with the card. The boot options are listed in the table below.

Mechanism	Connector/Chip designator	Hardware
ISP PROM	U501	XC18V04VQ44
JTAG	CON500	9-pin header

12.3.1 ISP PROM

A XILINX XC18V04 ISP (in system programmable) PROM is installed as default firmware load source of the SIS3100. The contents of the serial PROM can be altered via the JTAG port.

12.3.2 JTAG

The XILINX_JTAG connector (CON500) is designed for the use with standard JTAG (Joint Test Action Group) programming tools like the XILINX HW-JTAG_PC can be either used to program the on board EEPROM, or to load firmware to the FPGAs directly for test purposes. Find the pin assignment of the JTAG connector below.

Pin designator	Description
JCC	
GND	Ground
nc	not connected
TCK	Test clock
nc	not connected
TDO	Test data out
TDI	Test data in
nc	not connected
TMS	Test mode select

12.4 Connector types

Find below a list of the used connector types of the SIS3100.

Designation	Function	Manufacturer	Part Number
U200	Optical Link	IBM	42F10SNNAA20 or 30
CON700	Flat cable user I/O	AMP	2-828581-0
LEMO1-8	LEMO user I/O	LEMO	EPL.00.250.NTN
STD-168DIMM	DIMM socket	Berg	61327-31872
CON_D1	SHARC socket long	Samtec	TFM-150-02-S-D-A
CON_D2	SHARC socket short	Samtec	TFM-145-02-S-D-A
P1/P2	VME connector	Harting	02011602101.00

SIS GmbH

13 Index

+2.5 V 50 +3.3 V 50 +5 V 50 16 MHz 46 -5 V 50 A 42 Address Map 25, 41 addressing geographical 36 AM 12, 38 AMP 55 arbitration timeout 32 backplane 7 Berg 55 BERR timeout 32 BLT16 14 BLT32 15 **BLT8 14** boot mechanisms 54 bus error 32 bus request level 32 byte 13 byte enable 12, 13 byte enable bit 13 CMC 6,9 CON 12 CON_D1 55 CON_D2 55 CON500 54 CON700 55 connector 7 LC 10 ST 10 connector types 55 Control and Status register 25, 41 control register space 25 CPU 46 D16 13.14 D32 13, 15 D64 13 D8 13, 14 DC/DC 50 design 7 DIMM 8, 55 double byte 13 DRAM 8 DSP 8,45 available 37 run 37 DU 42 ECL 8, 50, 51 ECON 12 eight byte 13 EOT 12 FIFO 12

firmware 54 flat cable 8 flat I/O 52 FPGA 54 front panel 7 GA 36 GAP 36 gigabit hardware 10 transfer protocol 10 Harting 55 IBM 55 input flat cable 29, 30 LEMO 29, 30 input termination 49 introduction 5 IRQ 34 ISP 54 **ISP PROM 54** J/K 36 J10 44, 46 J90 45 JCC 54 JP770 49 JTAG 45, 54 jumper 49 description 51 JP_DSP 45 JP710 51 JP770 51 system controller 46 L 42 LC 10 LC connector 10 LD 42 LED 42, 44 access 42, 48 data down 48 data up 48 DSP user 42 front panel 7, 42 link data down 42 link data up 42 link up 42, 43, 48 master 42 PCB 7,43 power 42 ready 42 sequencer activity 42 surface mounted 42 user 31, 42, 48 LEMO 8, 9, 51, 55 LEMO I/O 53 linear regulator 50 Link data down 43

Page 58 of 59

SIS1100/3100 PCI to VME

SIS GmbH VME

data up 43 LU 42 M 42 mastership 32 MBLT64 15 MByte 8 multimode 10 nc 54 NIM 8, 50, 51 oscillator 46 output flat cable 29 lemo 29 P 42 P1 55 P2 55 PCB 42 PCB LED SIS1100-CMC 48 SIS1100-OPT 48 PCI 6 PLX 34 power consumption 50 PROM 54 protocol direct VME bus access 18 general transfer 11 integrity 10 mapped VME bus access 21 remote register transfer 17 SDRAM transfer 23 XILINX FPGA 10 protocol header 12 quad byte 13 **R** 42 register board type 26 control 37 doorbell 34 in/out 25, 29, 30, 34 interrupt control 30, 33 optical control 28 optical status 27 **OPT-VME** status 41 slave control 36 slave status 36 status 25 VME adress map 38 release on request 32

when done 32 request level 32 requester 32 S 42 Samtec 55 SDRAM 8, 40 SERDES 43 Set Register 37 SFF 10 SHARC 8, 55 SHARC address space 39 side cover 7 single mode 10 SIS1100 47 SIS1100-CMC 47 SIS1100-OPT 47, 49 SIS9200 8,45 ST 10 ST connector 10 STD-168DIMM 55 SYSRESET 45, 46 **TCK 54** TDI 54 TDO 54 termination 51 input 49 timeout arbitration 32 BERR 32 TMS 54 TTL 8, 9, 51 U 42 U10 46 U200 55 VDIS 46 Vitesse 43 VME 6,55 address modifier 38 bus extender 46 master 7 slave 7, 41 system controller 46 VME transfer mapped 38 VME64x 7,36 VME-VME 28 XC18V04 54 XILINX 54 XILINX_JTAG 54