
 

PPCBug
Firmware Package

User ’s Manual
Parts 1 & 2

 

PPCBUGA1/UM4 PPCBUGA2/UM4



 

Notice

 

While reasonable efforts have been made to assure the accuracy of this document, 
Motorola, Inc. assumes no liability resulting from any omissions in this document, 
or from the use of the information obtained therein. Motorola reserves the right to 
revise this document and to make changes from time to time in the content hereof 
without obligation of Motorola to notify any person of such revision or changes.

No part of this material may be reproduced or copied in any tangible medium, or 
stored in a retrieval system, or transmitted in any form, or by any means, radio, 
electronic, mechanical, photocopying, recording or facsimile, or otherwise, 
without the prior written permission of Motorola, Inc.

It is possible that this publication may contain reference to, or information about 
Motorola products (machines and programs), programming, or services that are 
not announced in your country. Such references or information must not be 
construed to mean that Motorola intends to announce such Motorola products, 
programming, or services in your country.

 

Restricted Rights Legend

 

If the documentation contained herein is supplied, directly or indirectly, to the U.S. 
Government, the following notice shall apply unless otherwise agreed to in 
writing by Motorola, Inc.

Use, duplication, or disclosure by the Government is subject to restrictions as set 
forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer 
Software clause at DFARS 252.227-7013.

Motorola, Inc.
Computer Group

2900 South Diablo Way
Tempe, Arizona 85282



 

Preface

 

The 

 

PPCBug Firmware Package UserÕs Manual

 

 provides information on the PPCBug 
Þrmware, the start-up and boot routines, the debugger commands, the one-line 
assembler/disassembler, and the debugger system calls. All information 
contained herein is speciÞc to MotorolaÕs PowerPCª-based boards: MVME230

 

x

 

 
VME Processor Modules, MVME260

 

x

 

 Single Board Computers, MVME360

 

4

 

 VME 
Processor Modules, MVME460

 

4

 

 VME Dual Processor Modules, MTX Embedded 
ATX Motherboards, MCP750 CompactPCI, and PMCspan PCI expansion boards. 
In this manual, they are collectively referred to as the 

 

PowerPC board

 

 or 

 

board

 

.

This manual covers release 3.5, and earlier versions, of PPC1Bug.

This document is bound in two parts. Part 1 (PPCBUGA1/UM4) contains the Table 
of Contents, List of Figures, List of Tables, and Chapters 1 through 3. Part 2 
(PPCBUGA2/UM4) contains Chapters 4 and 5, Appendixes A through H, and the 
Index.

The diagnostics are covered in the 

 

PPCBug Diagnostics Manual

 

 (PPCDIAA/UM2).

A basic knowledge of computers and digital logic is assumed. Refer to Appendix 
A, 

 

Related Documentation

 

, of this manual for a list of documents that may provide 
helpful information.

This manual is intended for anyone who designs OEM systems, supplies 
additional capability to an existing compatible system, or works in a lab 
environment for experimental purposes.

Motorola

 

¨

 

 and the Motorola symbol are registered trademarks of Motorola, Inc.

PowerPCª is a trademark of IBM, and is used by Motorola with permission.

AIX

 

TM

 

 is a trademark of IBM Corp.

All other products mentioned in this document are trademarks or registered 
trademarks of their respective holders.



 

Conventions

 

The following conventions are used in this document:

 

bold

 

is used for user input that you type just as it appears. Bold is also used for
commands, options and arguments to commands, and names of programs,
directories, and files.

 

italic

 

is used for names of variables to which you assign values. Italic is also used
for comments in screen displays and examples.

 

courier

 

is used for system output (e.g., screen displays, reports), examples, and
system prompts.

 

Return or Ôthe Return keyÕ

 

represents the Enter, Return, or Carriage Return key.

 

CTRL

 

represents the Control key. Execute control characters by pressing the

 

CTRL 

 

key and the letter simultaneously, e.g., 

 

CTRL-d

 

.

|
Separates two or more items that you can select from (one only).

[ ]
encloses an optional item that may occur zero or one time.

{ }
encloses an optional item that may occur zero or more times.

A character precedes a data or address parameter to specify the numeric format, 
as follows (if not specified, the format is hexadecimal):

$ dollar
a hexadecimal character. 

0x Zero-x

% percent a binary number.

& ampersand a decimal number.



 

Safety Summary
Safety Depends On You

 

The following general safety precautions must be observed during all phases of operation, service, and
repair of this equipment. Failure to comply with these precautions or with speciÞc warnings elsewhere in
this manual violates safety standards of design, manufacture, and intended use of the equipment.
Motorola, Inc. assumes no liability for the customer's failure to comply with these requirements. 
The safety precautions listed below represent warnings of certain dangers of which Motorola is aware. You,
as the user of the product, should follow these warnings and all other safety precautions necessary for the
safe operation of the equipment in your operating environment.

 

Ground the Instrument.

 

To minimize shock hazard, the equipment chassis and enclosure must be connected to an electrical ground.
The equipment is supplied with a three-conductor ac power cable. The power cable must be plugged into
an approved three-contact electrical outlet. The power jack and mating plug of the power cable meet
International Electrotechnical Commission (IEC) safety standards.

 

Do Not Operate in an Explosive Atmosphere.

 

Do not operate the equipment in the presence of ßammable gases or fumes. Operation of any electrical
equipment in such an environment constitutes a deÞnite safety hazard.

 

Keep Away From Live Circuits.

 

Operating personnel must not remove equipment covers. Only Factory Authorized Service Personnel or
other qualiÞed maintenance personnel may remove equipment covers for internal subassembly or
component replacement or any internal adjustment. Do not replace components with power cable
connected. Under certain conditions, dangerous voltages may exist even with the power cable removed. To
avoid injuries, always disconnect power and discharge circuits before touching them.

 

Do Not Service or Adjust Alone.

 

Do not attempt internal service or adjustment unless another person capable of rendering Þrst aid and
resuscitation is present.

 

Use Caution When Exposing or Handling the CRT.

 

Breakage of the Cathode-Ray Tube (CRT) causes a high-velocity scattering of glass fragments (implosion).
To prevent CRT implosion, avoid rough handling or jarring of the equipment. Handling of the CRT should
be done only by qualiÞed maintenance personnel using approved safety mask and gloves.

 

Do Not Substitute Parts or Modify Equipment.

 

Because of the danger of introducing additional hazards, do not install substitute parts or perform any
unauthorized modiÞcation of the equipment. Contact your local Motorola representative for service and
repair to ensure that safety features are maintained.

 

Dangerous Procedure Warnings.

 

Warnings, such as the example below, precede potentially dangerous procedures throughout this manual.
Instructions contained in the warnings must be followed. You should also employ all other safety
precautions which you deem necessary for the operation of the equipment in your operating environment.

!
WARNING

 

Dangerous voltages, capable of causing death, are present in this
equipment. Use extreme caution when handling, testing, and
adjusting. 



 

The computer programs stored in the Read Only Memory of this device contain 
material copyrighted by Motorola Inc., 1995, 1996, and 1997, and may be used only 
under a license such as those contained in MotorolaÕs software licenses.

The software described herein and the documentation appearing herein are 
furnished under a license agreement and may be used and/or disclosed only in 
accordance with the terms of the agreement.

The software and documentation are copyrighted materials. Making unauthorized 
copies is prohibited by law. No part of the software or documentation may be 
reproduced, transmitted, transcribed, stored in a retrieval system, or translated 
into any language or computer language, in any form or by any means without the 
prior written permission of Motorola, Inc.

 

Disclaimer of Warranty

 

Unless otherwise provided by written agreement with Motorola, Inc., the software 
and the documentation are provided on an Òas isÓ basis and without warranty. 
This disclaimer of warranty is in lieu of all warranties whether express, implied, or 
statutory, including implied warranties of merchantability or Þtness for any 
particular purpose.

!
WARNING

 

This equipment generates, uses, and can radiate electro-
magnetic energy. It may cause or be susceptible to electro-
magnetic interference (EMI) if not installed and used in a
cabinet with adequate EMI protection.

 

© Copyright Motorola, Inc. 1996, 1997
All Rights Reserved

Printed in the United States of America
December 1997



 

vii

 

Contents

 

CHAPTER 1 General Information

 

PPCBug Overview ..................................................................................................1-1
Comparison with other Motorola Bugs ...............................................................1-2
PPCBug Implementation .......................................................................................1-2
Memory Requirements...........................................................................................1-3

Size and Address Requirements for NVRAM .............................................1-3
Set-up ........................................................................................................................1-4
Start-up .....................................................................................................................1-4

MPU, Hardware, and Firmware Initialization ............................................1-5
LED/Serial Startup Diagnostic Codes...................................................1-7

Running the Diagnostics and Debugger............................................................1-12
Auto Boot ...............................................................................................................1-13
ROMboot ................................................................................................................1-14

Sample ROMboot Routine............................................................................1-16
Network Auto Boot...............................................................................................1-18
Restarting the System ...........................................................................................1-19

Reset .................................................................................................................1-19
Abort ................................................................................................................1-20
Break ................................................................................................................1-21
Board Failure ..................................................................................................1-21

SYSFAIL* Assertion and Negation (MVME230x, MVME260x, 
MVME360x, and MVME460x) ..............................................................1-22

MPU Clock Speed Calculation.....................................................................1-22
Disk I/O Support ..................................................................................................1-23

Blocks and Sectors..........................................................................................1-23
Device Probe ...................................................................................................1-24
Disk I/O via Debugger Commands............................................................1-24

IOI (Input/Output Inquiry) ..................................................................1-24
IOP (Physical I/O to Disk) ....................................................................1-25
IOT (I/O Configure)...............................................................................1-25
IOC (I/O Control)...................................................................................1-25
PBOOT (Bootstrap Operating System) ................................................1-25

Disk I/O via Debugger System Calls..........................................................1-26
Default PPCBug Controller and Device Parameters ................................1-27
Disk I/O Error Codes ....................................................................................1-27

Network I/O Support ..........................................................................................1-28



 

viii

 

Physical Layer Manager Ethernet Driver................................................... 1-28
UDP and IP Modules .................................................................................... 1-28
RARP and ARP Modules.............................................................................. 1-30
BOOTP Module.............................................................................................. 1-30
TFTP Module.................................................................................................. 1-30
Network Boot Control Module.................................................................... 1-30
Network I/O Error Codes............................................................................ 1-31

Multiprocessor Support (Remote Start)............................................................. 1-31
Multiprocessor Control Register (MPCR) Method................................... 1-31

Data and Address Sizes........................................................................................ 1-33
Byte Ordering ........................................................................................................ 1-34

 

CHAPTER 2 Using the Debugger

 

Entering Commands .............................................................................................. 2-1
Command Syntax ............................................................................................ 2-1
Command Arguments .................................................................................... 2-2

EXP ............................................................................................................. 2-2
ADDR......................................................................................................... 2-4
PORT .......................................................................................................... 2-6

Command Options .......................................................................................... 2-6
Control Characters........................................................................................... 2-7

Entering and Debugging Programs ..................................................................... 2-8
System Call Routines in User Programs.............................................................. 2-8
Preserving the Operating Environment .............................................................. 2-9

Memory Requirements ................................................................................... 2-9
Exception Vectors........................................................................................... 2-10
MPU Registers................................................................................................ 2-10

MPU Register SPR275............................................................................ 2-11
MPU Registers SPR272-SPR274............................................................ 2-11

Context Switching................................................................................................. 2-11
Floating Point Support......................................................................................... 2-13

Single Precision Real ..................................................................................... 2-14
Double Precision Real ................................................................................... 2-14
ScientiÞc Notation ......................................................................................... 2-15

 

CHAPTER 3 Debugger Commands

 

Introduction............................................................................................................. 3-1
Debugger Commands ............................................................................................ 3-1

AS - One-Line Assembler ............................................................................... 3-4



 

ix

 

BC - Block of Memory Compare....................................................................3-5
BF - Block of Memory Fill ...............................................................................3-7
BI - Block of Memory Initialize ....................................................................3-10
BM - Block of Memory Move .......................................................................3-12
BR - Breakpoint Insert  
NOBR - Breakpoint Delete............................................................................3-15
BS - Block of Memory Search .......................................................................3-17
BV - Block of Memory Verify........................................................................3-22
CM - Concurrent Mode  
NOCM - No Concurrent Mode ....................................................................3-25
CNFG - ConÞgure Board Information Block .............................................3-29
CS - Checksum ...............................................................................................3-33
CSAR - PCI ConÞguration Space READ Access .......................................3-35
CSAW - PCI ConÞguration Space WRITE Access.....................................3-36
DC - Data Conversion ...................................................................................3-37
DMA - Block of Memory Move....................................................................3-40
DS - One-Line Disassembler.........................................................................3-48
DU - Dump S-Records...................................................................................3-49
ECHO - Echo String.......................................................................................3-51
ENV - Set Environment.................................................................................3-53
FORK - Fork Idle MPU at Address..............................................................3-58
FORKWR - Fork Idle MPU with Registers.................................................3-59
GD - Go Direct (Ignore Breakpoints)...........................................................3-60
GEVBOOT - Global Environment Variable Boot.......................................3-62
GEVDEL - Global Environment Variable Delete .......................................3-68
GEVDUMP - Global Environment Variable(s) Dump..............................3-69
GEVEDIT - Global Environment Variable Edit .........................................3-71
GEVINIT - Global Environment Variable Initialization ...........................3-72
GEVSHOW - Global Environment Variable(s) Display ...........................3-73
GN - Go to Next Instruction .........................................................................3-74
GO - Go Execute User Program ...................................................................3-76
GT - Go to Temporary Breakpoint...............................................................3-79
HE - Help.........................................................................................................3-82
IDLE - Idle Master MPU ...............................................................................3-86
IOC - I/O Control for Disk ...........................................................................3-87
IOI - I/O Inquiry ............................................................................................3-90
IOP - I/O Physical (Direct Disk Access) .....................................................3-93
IOT - I/O ConÞgure Disk Controller ..........................................................3-99
IRD, IRM, IRS - Idle MPU Register Display/Modify/Set .....................3-107
LO - Load S-Records from Host.................................................................3-108
MA - Macro DeÞne/Display  
NOMA - Macro Delete ................................................................................3-114



 

x

 

MAE - Macro Edit........................................................................................ 3-117
MAL - Enable Macro Listing  
NOMAL - Disable Macro Listing .............................................................. 3-119
MAR - Load Macros .................................................................................... 3-120
MAW - Save Macros.................................................................................... 3-122
MD, MDS - Memory Display..................................................................... 3-124
MENU - System Menu................................................................................ 3-128
MM - Memory Modify................................................................................ 3-129
MMD - Memory Map Diagnostic.............................................................. 3-133
MS - Memory Set ......................................................................................... 3-135
MW - Memory Write ................................................................................... 3-136
NAB - Network Auto Boot ......................................................................... 3-138
NAP - NAP MPU......................................................................................... 3-139
NBH - Network Boot Operating System, Halt ........................................ 3-140
NBO - Network Boot Operating System.................................................. 3-142
NIOC - Network I/O Control.................................................................... 3-146
NIOP - Network I/O Physical ................................................................... 3-152
NIOT - Network I/O Teach (ConÞguration) ........................................... 3-156
NPING - Network Ping .............................................................................. 3-163
OF - Offset Registers Display/Modify ..................................................... 3-165
PA - Printer Attach  
NOPA - Printer Detach................................................................................ 3-168
PBOOT - Bootstrap Operating System ..................................................... 3-170
PF - Port Format  
NOPF - Port Detach..................................................................................... 3-178
PFLASH - Program FLASH Memory ....................................................... 3-183
PS - Put RTC into Power Save Mode ........................................................ 3-187
RB - ROMboot Enable  
NORB - ROMboot Disable ......................................................................... 3-188
RD - Register Display.................................................................................. 3-190
REMOTE - Remote ...................................................................................... 3-196
RESET - Cold/Warm Reset ........................................................................ 3-197
RL - Read Loop ............................................................................................ 3-199
RM - Register Modify.................................................................................. 3-200
RS - Register Set ........................................................................................... 3-203
RUN - MPU Execution/Status .................................................................. 3-205
SD - Switch Directories ............................................................................... 3-207
SET - Set Time and Date ............................................................................. 3-208
SROM - SROM Examine/Modify ............................................................. 3-209
SYM - Symbol Table Attach  
NOSYM - Symbol Table Detach ................................................................ 3-211
SYMS - Symbol Table Display/Search ..................................................... 3-214



 

xi

 

T - Trace .........................................................................................................3-216
TA - Terminal Attach....................................................................................3-220
TIME - Display Time and Date ..................................................................3-221
TM - Transparent Mode ..............................................................................3-222
TT - Trace to Temporary Breakpoint .........................................................3-224
VE - Verify S-Records Against Memory....................................................3-227
VER - Revision/Version Display ...............................................................3-231
WL - Write Loop...........................................................................................3-235

 

PART 2

CHAPTER 4 One-Line Assembler/ Disassembler

 

Introduction .............................................................................................................4-1
PowerPC Assembly Language ..............................................................................4-1

Machine-Instruction Operation Codes .........................................................4-2
Directives...........................................................................................................4-2

Comparison with the Standard Assembler .........................................................4-2
Source Program Coding .........................................................................................4-3

Source Line Format..........................................................................................4-3
Operation Field .........................................................................................4-4
Operand Field............................................................................................4-4
Disassembled Source Line.......................................................................4-4
Mnemonics and Delimiters .....................................................................4-5
Instructions ................................................................................................4-6
Character Set..............................................................................................4-7

Addressing Modes...........................................................................................4-8
WORD DeÞne Constant Directive.................................................................4-9
SYSCALL System Call Directive..................................................................4-10

Entering and Modifying Source Programs........................................................4-11
Invoking the Assembler/Disassembler ......................................................4-11
Entering a Source Line ..................................................................................4-12
Entering Branch Operands ...........................................................................4-13
Assembler Output/Program Listings.........................................................4-13
Assembler Error Messages ...........................................................................4-14

 

CHAPTER 5 System Calls

 

Introduction .............................................................................................................5-1
Invoking System Calls.....................................................................................5-1
String Formats for I/O ....................................................................................5-2



 

xii

 

System Call Routines.............................................................................................. 5-2
.INCHR ............................................................................................................. 5-7
.INSTAT ............................................................................................................ 5-8
.INLN ................................................................................................................ 5-9
.READSTR ...................................................................................................... 5-10
.READLN........................................................................................................ 5-12
.CHKBRK........................................................................................................ 5-13
.DSKRD  
.DSKWR .......................................................................................................... 5-14
.DSKCFIG ....................................................................................................... 5-17

Configuration Area Block CFGA Fields.............................................. 5-22
.DSKFMT ........................................................................................................ 5-27
.DSKCTRL....................................................................................................... 5-30
.NETRD  
.NETWR .......................................................................................................... 5-32
.NETCFIG....................................................................................................... 5-34
.NETFOPN ..................................................................................................... 5-40
.NETFRD ........................................................................................................ 5-42
.NETCTRL ...................................................................................................... 5-44
.OUTCHR ....................................................................................................... 5-47
.OUTSTR  
.OUTLN........................................................................................................... 5-48
.WRITE  
.WRITELN ...................................................................................................... 5-49
.PCRLF ............................................................................................................ 5-50
.ERASLN......................................................................................................... 5-51
.WRITD  
.WRITDLN...................................................................................................... 5-52
.SNDBRK ........................................................................................................ 5-54
.DELAY ........................................................................................................... 5-55
.RTC_TM......................................................................................................... 5-56
.RTC_DT ......................................................................................................... 5-57
.RTC_DSP ....................................................................................................... 5-58
.RTC_RD ......................................................................................................... 5-59
.REDIR ............................................................................................................ 5-60
.REDIR_I  
.REDIR_O........................................................................................................ 5-61
.RETURN ........................................................................................................ 5-62
.BINDEC ......................................................................................................... 5-63
.CHANGEV.................................................................................................... 5-64
.STRCMP ........................................................................................................ 5-65
.MULU32 ........................................................................................................ 5-66



 

xiii

 

.DIVU32...........................................................................................................5-67

.CHK_SUM .....................................................................................................5-68

.BRD_ID ..........................................................................................................5-69

.ENVIRON......................................................................................................5-72
.PFLASH Function ........................................................................................5-76
.DIAGFCN ......................................................................................................5-79
.SIOPEPS.........................................................................................................5-91
.FORKMPU Function ....................................................................................5-93
.FORKMPUR Function .................................................................................5-94
.IDLEMPU Function .....................................................................................5-99
.IOINQ ...........................................................................................................5-100
.IOINFORM ..................................................................................................5-106
.IOCONFIG...................................................................................................5-108
.IODELETE ...................................................................................................5-109
.SYMBOLTA.................................................................................................. 5-111
.SYMBOLTD .................................................................................................5-113

 

APPENDIX A Related Documentation

 

Motorola Computer Group Documents ............................................................ A-1
Microprocessor and Controller Documents ...................................................... A-3
Related SpeciÞcations ........................................................................................... A-9

 

APPENDIX B System Menu

 

Introduction ............................................................................................................ B-1
Menu Items ............................................................................................................. B-1

Continue System Start-up.............................................................................. B-1
Select Alternate Boot Device.......................................................................... B-1
Go to System Diagnostics .............................................................................. B-2
Initiate Service Call ......................................................................................... B-2
Display System Test Errors ............................................................................ B-2
Dump Memory to Tape.................................................................................. B-2

Using the Service Call Function ........................................................................... B-5
Operation ......................................................................................................... B-5

Sending Messages.................................................................................... B-7
Concurrent Mode..................................................................................... B-7
Terminating the Conversation and Concurrent Modes..................... B-8

Manual Connection ........................................................................................ B-9
Terminal Connection .................................................................................... B-11



 

xiv

 

APPENDIX C PPCBug Messages

 

Introduction............................................................................................................ C-1
Error Messages ....................................................................................................... C-1
Other Messages ...................................................................................................... C-2

 

APPENDIX D S-Record Format

 

Introduction............................................................................................................D-1
S-Record Content ...................................................................................................D-1
S-Record Types .......................................................................................................D-2
Creating S-Records ................................................................................................D-4
Example...................................................................................................................D-4

 

APPENDIX E Disk and Tape Controllers

 

Disk and Tape Support ..........................................................................................E-1
Floppy Drive ConÞguration Parameters.............................................................E-2

 

APPENDIX F Disk Status Codes

 

Introduction.............................................................................................................F-1
SCSI....................................................................................................................F-1
ATA (Hard Disks/CD-ROM Drives) ............................................................F-2
ATAPI (CD-ROM Drives) ...............................................................................F-2

Controller-Independent Status Codes .................................................................F-3
SCSI Firmware Status Codes.................................................................................F-3
ATA/ATAPI Firmware Status Codes...................................................................F-6

 

APPENDIX G Network Controller Devices

APPENDIX H Network Communication Status Codes

Glossary

 

Abbreviations, Acronyms, and Terms to Know ............................................. GL-1



 

xv

 

List of Tables

 

Table 1-1. LED/Serial Startup Diagnostic Codes ...............................................1-8
Table 3-1. Debugger Commands...........................................................................3-1
Table 5-1. System Call Routines -- Hex Code Order ..........................................5-2
Table 5-2. System Call Routines -- Alphabetical Order......................................5-4
Table 5-3. Disk Packet Parameters ......................................................................5-20
Table 5-4. IOSATM Fields (CFGA)......................................................................5-22
Table 5-5. IOSPRM Fields (CFGA) ......................................................................5-23
Table 5-6. IOSEPRM Fields (CFGA)....................................................................5-23
Table 5-7. IOSATW Fields (CFGA)......................................................................5-24
Table 5-8. CFGA Fields .........................................................................................5-25

 

Table A-1. Motorola Computer Group Documents ..................................................A-2
Table A-2. Microprocessor and Controller Documents............................................A-3
Table A-3. Related Specifications ............................................................................A-9
Table C-1. Debugger Error Messages.......................................................................C-1
Table C-2. Other Messages.......................................................................................C-2
Table D-1. S-Record Fields ......................................................................................D-1
Table E-1. Disk and Tape Controllers Supported ..................................................... E-1
Table E-2. Floppy Drive Configuration Parameters ................................................. E-2
Table F-1. Controller-Independent Status Codes...................................................... F-3
Table F-2. SCSI Firmware Status Codes .................................................................. F-4
Table F-3. ATA/ATAPI Controller-Dependent Errors............................................. F-7
Table H-1. Controller-Independent Status Codes.....................................................H-1
Table H-2. DEC21040/21140 Controller Status Codes............................................H-2





 

xvii

 

List of Figures

 

Figure 1-1. Network Boot Modules ....................................................................1-29
Figure 3-1. Boot Record ......................................................................................3-172
Figure 3-2. PowerPC Reference Platform Partition Table Entry...................3-173
Figure 3-3. Layout of the $41-Type Partition...................................................3-174





 

1

 

1-1

 

1General Information

 

PPCBug Overview

 

PPCBug is a powerful evaluation and debugging tool for systems 
built around the Motorola PowerPC microprocessors. PPCBug 
firmware consists of three parts:

 

❏

 

Command-driven user-interactive software debugger. It is 
hereafter referred to as the 

 

debugger

 

, which is described in this 
manual. Debugging commands are available for loading and 
executing user programs under complete operator control for 
system evaluation. 

 

❏

 

Command-driven diagnostic package for testing and 
troubleshooting the PowerPC board, which is hereafter called 
the 

 

diagnostics

 

. Refer to the 

 

PPC1Bug Diagnostics Manual

 

.for 
information on the diagnostics and the diagnostics utilities 
and self-tests.

 

❏

 

MPU, firmware, and hardware initialization routines, which 
are described in this manual.

The PPCBug firmware is implemented on the following Motorola 
PowerPC-based products:

 

❏

 

MVME230

 

x

 

 VME Processor Modules

 

❏

 

MVME260

 

x

 

 Single Board Computers

 

❏

 

MVME3604 VME Processor Modules

 

❏

 

MVME4604 VME Dual Processor Modules

 

❏

 

MTX Embedded ATX Motherboards

 

❏

 

MCP750 PowerPC Single Board Computers

A PMCspan board added to any of these also interfaces with PPCBug.



 

Comparison with other Motorola Bugs

1-2

1

 

They are collectively referred to in this manual as the 

 

PowerPC board

 

 
or 

 

board

 

.

The debugger includes:

 

❏

 

Commands for display and modification of memory

 

❏

 

Breakpoint and tracing capabilities

 

❏

 

Assembler and disassembler useful for patching programs

Various PPCBug routines that handle I/O, data conversion, and 
string functions are available to user programs through the System 
Call handler.

Because PPCBug is command-driven, it performs its various 
operations in response to user commands entered at the keyboard.

 

Comparison with other Motorola Bugs

 

The PPCBug is similar to previous Motorola firmware packages 
(e.g., MVME147Bug, MVME167Bug, MVME187Bug), with 
differences due to microprocessor architectures. These differences 
are primarily reflected in the instruction mnemonics, register 
displays, addressing modes of the assembler/disassembler, and 
argument passing to the system calls.

 

PPCBug Implementation

 

PPCBug is written largely in the C programming language, 
providing benefits of portability and maintainability. Where 
necessary, the assembly language has been used in separately 
compiled program modules that deal with processor-specific 
issues. No mixed-language modules are used.

Physically, PPCBug is contained in two socketed 32-pin PLCC 
Flash devices that together provide 1MB (256KB words) of storage. 
PPCBug uses the entire memory contained in the two devices. 



 

General Information

1-3

1

 

The executable code is checksummed at every power-on or reset 
firmware entry. The result is checked with a pre-calculated 
checksum contained in the last 16-bit word of the Flash image.

!
Caution

 

Although a command to allow the erasing and 
reprogramming of this Flash memory is available to 
you, keep in mind that reprogramming any portion of 
Flash memory will erase everything currently contained 
in Flash, including PPCBug.

 

Memory Requirements

 

The debugger requires approximately 768KB of read/write 
memory (i.e., DRAM). The debugger will allocate this memory 
from the top of memory. For example, on a system which contains 
64MB ($04000000) of read/write memory, the debugger's memory 
page will be located at $03F80000 to $03FFFFFF.

 

Size and Address Requirements for NVRAM

 

Currently, Motorola uses the SGS-Thompson Timekeeper SRAM 
device (48T559), or equivalent. This is used on the PowerPlus 
boards and is structured by the Debugger as follows:

NVRAM = 8192 bytes total size (with rtc)

Address ranges include:

 

Size/Area Offset

 

5880 bytes user area 0000 - 16f7
2048 bytes debugger area 16f8 - 1ef7
256 bytes conÞguration area 1ef8 - 1ff7
8 bytes real time clock registers 1ff8 - 1fff



 

Set-up

1-4

1

 

Set-up

 

Refer to the board installation and use manual for information on 
installing the hardware, configuring jumpers, and assigning the 
console monitor.

 

Start-up

 

At either power-up or system reset, PPCBug performs the MPU, 
hardware, and firmware initialization process (refer to 

 

MPU, 
Hardware, and Firmware Initialization

 

 on page 1-5). This process 
includes a checksum of the FLASH memory contents.

The following types of messages are displayed on the firmware 
console during the initialization process:

 

Copyright Motorola Inc. 1988 - 1997, All Rights Reserved 

PPC1 Debugger/Diagnostics Release Version 3.x - xx/xx/xx/RMxx 
COLDStart 

Local Memory Found =04000000 (&67108864) 

MPU Clock Speed =167Mhz 

BUS Clock Speed =67Mhz

Reset Vector Location  : ROM Bank B
Mezzanine Configuration: Single-MPU
Current 60X-Bus Master : MPU0
Idle MPU(s)            : NONE

System Memory: 64MB, ECC Enabled (ECC-Memory Detected)

L2 Cache:      NONE

PPC1-Bug>

At this point, PPCBug is waiting for you to enter one of the 
commands described in Chapter 3 of this manual.

PPCBug may alternatively be configured via the ENV command to 
run selftest and/or autoboot automatically during startup. If so, 
then PPCBug will instead behave as follows:

The system pauses five seconds, during which you may terminate 
start-up, and exit to the diagnostics prompt, by pressing ESC or the 
Break key.



General Information

1-5

1

The system performs the self test diagnostics if you do not 
terminate system start-up. Upon successful completion of these 
tests, the system pauses another five seconds. You may terminate 
start-up, and exit to the diagnostics prompt, by pressing ESC or the 
Break key.

If you do not terminate system start-up, the system begins the boot 
routine that has been set up in the ENV command, either NVRAM 
Boot List Boot, Auto Boot, ROMboot, or Network Auto Boot.

If the self-tests fail, various error messages appear, and the 
diagnostics prompt appears.

Refer to Chapter 3 for information on setting the ENV command 
parameters.

MPU, Hardware, and Firmware Initialization

The MPU, hardware, and firmware initialization process is 
performed by the PPCBug power-up or system reset. The steps 
below are a high-level outline; not all of the detailed steps are listed.

1. Set MPU.MSR to known value.

2. Invalidate the MPU's data/instruction caches.

3. Clear all segment registers of the MPU.

4. Clear all block address translation registers of the MPU.

5. For Òdual CPU onlyÓ boards (MVME460x or MTX), catch one 
CPU of a dual CPU and place it in a waiting loop.

6. Initialize the MPU bus to PCI bus bridge device.

7. Initialize the PCI bus to ISA bus bridge device.

8. Calculate the external bus clock speed of the MPU.

9. Delay for 750 milliseconds.

10. Determine the CPU board type.

11. Size the local read/write memory (i.e., DRAM).

12. Initialize the read/write memory controller.



Start-up

1-6

1

13. Set base address of memory to $00000000.

14. Retrieve the speed of read/write memory from NVRAM.

15. Initialize read/write memory controller with the speed of   
read/write memory.

16. Retrieve the speed of read only memory (i.e., FLASH) from   
NVRAM.

17. Initialize read only memory controller with the speed of read 
only memory.

18. Enable the MPU's instruction cache. 

19. Copy the MPU's exception vector table from $FFF00000 to   
$00000000.

20. Initialize the SIO (PC87303/PC87307/PC87308) resources' 
base addresses for boards that have the SIO device.

21. Initialize the Z8536 device if the board has the device.

22. Verify MPU type.

23. Enable the super-scalar feature of the MPU (boards with 
MPC604-type chips only).

24. Initialize the Keyboard Controller 
(PC87303/PC87307/PC87308) for boards that have the 
device.

25. Determine the debugger's Console/Host ports, and initialize   
the appropriate UART and Graphic devices.

26. Display the debugger's copyright message.

27. Display any hardware initialization errors that may have   
occurred.

28. Checksum the debugger object, and display a warning 
message if the checksum failed to verify.

29. Display the amount of local read/write memory found.



General Information

1-7

1

30. Verify the configuration data that is resident in NVRAM,   
and display a warning message if the verification failed.

31. Calculate and display the MPU clock speed. Verify that the 
MPU clock speed matches the configuration data, and 
display a warning message if the verification fails.

32. Display the BUS clock speed. Verify that the BUS clock speed 
matches the configuration data, and display a warning 
message if the verification fails.

33. For boards that have a Keyboard Controller display 
initialization errors that have occurred.

34. Probe PCI bus for supported Network devices.

35. Probe PCI bus for supported Mass Storage devices.

36. Initialize the memory/IO addresses for the supported PCI 
bus devices.

37. Execute self-test, if configured.

38. Extinguish the board fail LED, if there are no self-test failures 
or initialization/configuration errors.

39. Execute the configured boot routine, either ROMboot, 
Autoboot, or Network Autoboot. (PowerPlus architecture 
boards do not execute a conÞgured boot routine.)

40. Execute the user interface (i.e., the PPC1-Bug>  or 
PPC1-Diag>  prompt).

LED/Serial Startup Diagnostic Codes

These codes are displayed on seven-segment LEDs at key points in 
the initialization of the hardware devices. Should the debugger fail 
to come up to a prompt, the last code displayed will indicate how 
far the initialization sequence had progressed before stalling. The 
serial port version of the startup codes is enabled by an ENV 
parameter:

Serial Startup Code Master Enable [Y/N]=N?



Start-up

1-8

1

Under normal conditions, the startup sequence begins at 0x1100 
and continues to the PPC1-Bug> prompt just after 0x11D4. RAM 
initialization problems may cause the startup sequence to terminate 
at the : (RawBug) prompt just after 0x11D8 instead.

The operating system boot sequence begins at 0x11E0 with the 
creation of residual data and continues to 0x11EC just before 
execution is passed to the boot image. The OS may have its own 
LED codes which are displayed after 0x11EC.

A line feed can be inserted after each serial code is displayed to 
prevent it from being overwritten by the next code. This is also 
enabled by an ENV parameter:

Serial Startup Code LF Enable [Y/N]=N?

The following firmware codes are always sent to 7-segment LEDs 
located at ISA I/O address 0x8C0. These codes can also be sent to 
the debugger serial port if the ENV parameter ÒSerial Startup Code 
Master EnableÓ is set to ÔYÕ. The list of LED/serial codes follows.

Table 1-1.  LED/Serial Startup Diagnostic Codes 

Code (Hex) Location in Startup

1100 Setting up MSR (startup begins)
1102 Invalidating caches
1104 Determining ROM or RAM execution mode
1106 Setting up machine state register
1108 Setting up CPUÕs address translation registers
110A Setting up CPUÕs address translation table
110C Shutting down redundant processors
110E Initializing super I/O chip (CPU initialization completed)
1110 Initializing raw I/O device
1112 Getting PHB (PCI Host Bridge) Table Pointer
1114 Initializing PCI bridge
1116 Initializing the powerup ßag indicator
1118 Calculating the speed of the processor bus
111A Waiting for hardware to initialize memory



General Information

1-9

1

111C Setting up the DRAM init parameters
111E Initializing DRAM in bridge/memory controller
1120 Setting up debugger memory page area
1122 Calculating and setting DRAM speed
1124 Calculating and setting ROM speed
1126 Enabling instruction cache
1128 Setting up debugger memory page tables
112A Setting up debugger kernel pointers and saving registers
112C Setting up buginit section pointers and runtime variables

1130 Retrieving the processor board type
1132 Initializing the Z8536
1134 Initializing local board status
1136 Retrieving the base board type
1138 Checking the level of the ABORT push-button
113A Initializing the interrupt/timer controller
113C Retrieving MPU identiÞer
113E Enabling super-scalar modes
1140 Adding processor-speciÞc work-arounds
1142 Getting the bus clock speed
1144 Initializing the keyboard controller
1146 Initializing the PCI interrupt route control registers
1148 Starting PCI hierarchy conÞguration process

12nn Probing PCI conÞg space (nn = bbbddddd; bbb = bus#, 
ddddd = dev#

1149 Allocating PCI I/O & memory space and initializing PCI 
devices.

114A Initializing RAVEN PCI space
114C Initializing RAVEN time base registers

Table 1-1.  LED/Serial Startup Diagnostic Codes (Continued)

Code (Hex) Location in Startup



Start-up

1-10

1

114E Initializing FALCON ROM
1150 Initializing VME bridge
1152 Initializing ISA bridge
1154 Sending speaker beep

1160 Checking abort switch state
1162 Initializing exception handling
1164 Initializing board identiÞer structure
1166 Initializing point break table
1168 Initializing macro subsystem
116A Initializing conÞguration data area
116C Initializing board information data area
116E Initializing I/O (character) subsystem
1170 Initializing register Þle
1172 Getting bridge pointer
1174 Setting up local memory pointers
1176 Setting up local memory size variables
1178 Displaying sign-on messages
117A displaying board initialization errors
117C Verifying the ROM checksum
117E Displaying memory size and misc errors
1180 Displaying MPU clock speed
1182 Verifying MPU clock speed
1184 Displaying bus clock speed
1186 Initializing network I/O subsystem
1188 Initializing disk I/O subsystem
118A Initializing direction ßags
118C Initializing NVRAM (PReP) environment
118E Initializing residual data pointer
1190 Initializing input/output pointers
1192 Initializing diagnostic subsystem

Table 1-1.  LED/Serial Startup Diagnostic Codes (Continued)

Code (Hex) Location in Startup



General Information

1-11

1

1194 Setting up special init section pointers and runtime variables
1196 Initializing abort switch
1198 Setting up board sufÞx and return environment

11A0 Retrieving the processor board type
11A2 Displaying memory warning and MPU conÞguration
11A4 Clearing MPU idle semaphores
11A6 Waiting for MPU logins
11A8 Displaying MPU status information
11AA Setting up DRAM and bridge pointers
11AC Initializing DRAM ECC/parity
11AE Displaying DRAM information
11B0 Setting up misc. L2 cache variables
11B2 Setting up L2 cache size variables
11B4 Initializing and ßushing L2 cache data parity
11B6 Displaying L2 cache parity state
11B8 Reading NVRAM contents
11BA Verifying NVRAM header
11BC Initializing NVRAM contents
11BE Retrieving global environment variable pointers

11D0 Initializing processor timebase/decrementer registers
11D2 Enabling interrupts
11D4 Transferring control to monitor (initialization complete)
11D8 Error - dropping to RawBug

11E0 Initializing residual data structure
11E2 Adding vital product data
11E4 Adding processor information
11E6 Adding memory information
11E8 Adding PCI device information

Table 1-1.  LED/Serial Startup Diagnostic Codes (Continued)

Code (Hex) Location in Startup



Running the Diagnostics and Debugger

1-12

1

Running the Diagnostics and Debugger
In order to use the diagnostics, terminate the start-up process by 
pressing ESC or the Break key during one of the four pauses 
(PowerPlus architecture boards in their default configuration may 
not pause at any of the four places.) The diagnostics prompt 
(PPC1-Diag> ) appears. You may switch to the debugger prompt 
(PPC1-Bug>) by using the SD command.

Both the debugger and diagnostic commands are available from the 
diagnostic prompt. Only the debugger commands are available 
from the debugger prompt.

You may view a list of the diagnostics or debugger commands by 
using the HE (Help) command.

Note Some diagnostics depend on restart defaults that are 
set up only in a particular restart mode. Refer to the 
PPCBug Diagnostics Manual, PPCDIAA/UM, for the 
correct mode.

Refer to the PPCBug Diagnostics Manual for complete descriptions 
of the diagnostic routines available and instructions on how to 
invoke them.

11EA Adding ISA device information
11EC Residual data completed

12nn Probing PCI conÞg space (board speciÞc)

Table 1-1.  LED/Serial Startup Diagnostic Codes (Continued)

Code (Hex) Location in Startup



General Information

1-13

1

Auto Boot

Note The PowerPlus architecture boards do not execute a 
configured boot routine.

Auto Boot is the default boot routine. It provides an independent 
mechanism for booting an operating system. No console is 
required. Autoboot selects the boot device from either a scan list of 
device types, a floppy diskette, a CD-ROM, tape, or a hard disk. 

You may change the scan order, or configure Auto Boot to boot 
from a specific Controller Logical Unit Number (CLUN) and 
Device Logical Unit Number (DLUN) by changing the ENV 
command parameters for enabling Auto Boot (refer to Chapter 3 for 
information). 

At power-up, Auto Boot is enabled. The following message is 
displayed on the system console: 

Autoboot in progress... To abort hit <BREAK>

Following this message there is a delay to allow you to abort the 
Auto Boot process and gain control. Press either the BREAK key or 
the software abort or reset switch to abort Autoboot.

If you do not abort Auto Boot, the actual I/O is begun. The program 
pointed to within the boot-record of the media specified is loaded 
into RAM, and control is passed to it. 

Upon power-up or system reset, PPCBug examines the validity of 
the configuration parameters in NVRAM. If there is a configuration 
error (e.g., corrupted data or checksum error), the PPCBug will 
initialize the configuration parameters with the default values, and 
run AutoBoot. Following the auto-initialization of the 
configuration parameters, the PPCBug will reset the system to 
allow a start-up with the now default configuration parameters.



ROMboot

1-14

1

ROMboot

Note The PowerPlus architecture boards do not execute a 
configured boot routine.

ROMboot is a mechanism for booting an operating system from a 
user-defined routine stored in ROM. ROMboot executes at power-
up (or optionally at reset) if it is configured and enabled in 
parameters set with the ENV command. It may also be executed 
with the RB (ROMboot) command.

Refer to Chapter 3 for information on setting the ENV command 
parameters for enabling ROMboot.

For ROMboot to work, a ROMboot routine must be stored in the 
FLASH memory to support it. If ROMboot code is installed, a user-
written routine is given control (if the routine meets the format 
requirements). One use of ROMboot might be resetting SYSFAIL* 
on an unintelligent controller board.

The NORB command disables ROMboot.

For a user's ROMboot routine to gain control through the ROMboot 
linkage, four requirements must be met:

❏ Power must have just been applied (or at reset, if configured 
to do so with the ENV command). 

❏ Your ROMboot routine must be stored within the PowerPC 
board FLASH memory map (or elsewhere in onboard 
memory, if configured to do so with the ENV command). 

❏ The ASCII string ÒBOOTÓ must be located within the 
specified memory range. 

❏ Your ROMboot routine must pass a checksum test, which 
ensures that this routine was really intended to receive 
control at power-up. 

When the module is ready it can be loaded into RAM. Use the CS 
command to generate, install, and verify the checksum.



General Information

1-15

1

The format of the beginning of the routine is:

If you want to make use of ROMboot, you do not have to fill a 
complete FLASH device. Any partial amount is acceptable, as long 
as:

❏ The identifier string ÒBOOTÓ starts on a word (FLASH and 
Direct spaces) or 8KB (local RAM and VMEbus spaces) 
boundary.

❏ The ROMboot routine size (in bytes) is evenly divisible by 2. 

❏ The length parameter (offset $8) reflects where the checksum 
is, and the checksum is correct.

ROMboot searches predefined areas of the memory map for 
possible routines and checks for the ÒBOOTÓ indicator. Two events 
are of interest for any location being tested: 

❏ The map is searched for the ASCII string ÒBOOTÓ. 

❏ If the ASCII string ÒBOOTÓ is found, it is still undetermined 
whether the routine is meant to gain control at power-up or 
reset. To verify that this is the case, the bytes starting from 
ÒBOOTÓ through the end of the routine, excluding the two 
byte checksum, are run through the debugger checksum 
algorithm. If the result of the checksum is equal to the final 
two bytes of the ROMboot routine (the checksum), it is 

Offset Length Contents Description

$00 4 bytes BOOT ASCII string indicating possible 
routine; the checksum must be 
valid

$04 4 bytes Entry Address Word offset from ÒBOOTÓ

$08 4 bytes Routine Length Word; includes length from 
ÒBOOTÓ to and including a two-
byte checksum

$0C Length 
of name

Routine name ASCII string containing routine 
name 



ROMboot

1-16

1

established that the routine was meant to be used for 
ROMboot.

Under control of the ENV command, the sequence of searches is as 
follows: 

1. Search direct address for ÒBOOTÓ.   The direct address points 
to an installed ROMboot routine. It is a variable that may be 
set using the ENV command.

2. Search complete ROM map. 

3. Search local RAM, at all 8KB boundaries starting at the 
beginning of local RAM. 

4. Search the VMEbus map (if so selected by the ENV 
command) on all 8KB boundaries starting at the end of the 
onboard RAM. VMEbus address space is searched both 
below (if the start address of local RAM is not located at 0) 
and above local RAM up to the beginning of FLASH Space.

Sample ROMboot Routine

The example ROMboot routine performs the following: 

❏ Outputs a <CR> <LF> sequence to the default output port.

❏ Displays the date and time from the current cursor position.

❏ Outputs two more <CR> <LF> sequences to the default 
output port. 

❏ Returns control to PPCBug.



General Information

1-17

1

Do the following to prepare the ROMboot routine (includes 
checksum calculation):

1. Assemble and link the code, leaving $00 in the even and odd 
locations destined to contain the checksum.

2. Load the routine into RAM (with S-records via the LO 
command, or from magnetic media using IOP).

3. Display entire ROMboot routine (checksum bytes are at 
$00010038 and $00010039).

PPC1-Bug>MD 10000 :10 <Return>
00010000  424F4F54 00000010 0000003A 54455354  BOOT.......:TEST
00010010  39400026 44000002 39400052 44000002  9@.&D...9@.RD...
00010020  39400026 44000002 39400026 44000002  9@.&D...9@.&D...
00010030  39400063 44000002 0000FFFF FFFFFFFF  9@.cD...........

4. Disassemble executable instructions.

PPC1-Bug>MD 10010:5;DI <Return>
00010010 39400026  SYSCALL     .PCRLF

00010018 39400052  SYSCALL     .RTC_DSP

00010020 39400026  SYSCALL     .PCRLF

00010028 39400026  SYSCALL     .PCRLF

00010028 39400063  SYSCALL     .RETURN

5. Perform checksum on locations $10000 through $10037 (refer 
to CS command in chapter 3).

PPC1-Bug>CS 10000:38/2;H <Return>
Effective address: 00010000

Effective count  : &56

Checksum: ACFA

6. Insert checksum into bytes $10038, $10039. 

PPC1-Bug>M 10038;H <Return>
00010038 0000? ACFA. <Return>

7. Display the entire ROMboot routine with checksums. 

PPC1-Bug>MD 10000 :10 <Return>
00010000  424F4F54 00000010 0000003A 54455354  BOOT.......:TEST

00010010  39400026 44000002 39400026 44000002  9@.&D...9@.RD...

00010020  39400026 44000002 39400026 44000002  9@.&D...9@.&D...

00010030  39400063 44000002 ACFAFFFF FFFFFFFF  9@.cD...........



Network Auto Boot

1-18

1

8. Verify the functionality of the user ROMboot routine with the 
RB command.

PPC1-Bug>RB; V <Return>
ROMboot about to Begin... Press <ESC> to Bypass, <SPC> to Continue
Direct Add: FFC00000 FFFFFFFC: Searching for ROMboot Module at: 00010000
Executing ROMboot Module “TEST” at 00010000

MON MAR 27 10:39:08.00 1995

PPC1-Bug>

The sample ROMboot routine is now ready for use.

Network Auto Boot
Network Auto Boot (or Network Boot) is a software routine that 
provides a mechanism for booting an operating system using an 
Ethernet network as the boot device. 

Network Auto Boot executes at power-up (or optionally at reset) if 
it is configured and enabled in parameters set with the ENV 
command.

This routine selects the boot device based on from the Controller 
Logical Unit Number (CLUN) and Device Logical Unit Number 
(DLUN) which have been set in the ENV command.

Refer to Chapter 3 for information on setting the ENV command 
parameters for enabling Network Auto Boot.

If Network Boot is enabled, the following message is displayed on 
the system console at power-up:

Network Boot in progress... To abort hit <BREAK>

Following this message there is approximately a five-second delay 
before the actual I/O is begun. The program pointed to within the 
volume ID of the media specified is loaded into RAM and control is 
passed to it. 



General Information

1-19

1

During the delay, you can gain control without Network Autoboot 
by pressing either the BREAK key or the software abort or reset 
switches. 

Network Autoboot is controlled by parameters contained in the 
NIOT and ENV commands. These parameters allow the selection 
of specific boot devices, systems, and files and allow programming 
of the boot delay. Refer to the NIOT and ENV commands in 
Chapter 3 for more details. 

Restarting the System
You can initialize the system to a known state in three different 
ways: reset, abort, and break. Each has characteristics which make 
it more appropriate than the others in certain situations.

Reset

Pressing and releasing the board front panel RESET switch initiates 
a system reset. Cold and warm reset modes are available. By 
default, PPCBug is in cold mode (refer to the RESET command 
description in Chapter 3). During cold reset, a total system 
initialization takes place, as if the PowerPC board had just been 
powered up. All static variables are restored to their default states. 
The breakpoint table and offset registers are cleared. The target 
registers are invalidated. Input and output character queues are 
cleared. Onboard devices are reset, and the first two serial ports are 
reconfigured to their default state.

During warm reset, the PPCBug variables and tables are preserved, 
as well as the target state registers and breakpoints.

Reset must be used if the processor ever halts, or if the PPCBug 
environment is ever lost, such as if the vector table is destroyed, or 
the stack is corrupted.



Restarting the System

1-20

1

Abort

Abort is invoked by pressing and releasing the ABORT switch. 
Whenever abort is invoked while executing a user program 
(running target code), a snapshot of the processor state is captured 
and stored in the target registers. (When working in the debugger, 
abort captures and stores only the Instruction Pointer, status 
register, and format and vector information.) For this reason, abort 
is most appropriate when terminating a user program that is being 
debugged. Abort should be used to regain control if the program 
gets caught in a loop. The target IP and register contents help to 
pinpoint the malfunction.

Pressing and releasing the ABORT switch generates a local board 
condition which interrupts the microprocessor. The target registers, 
reflecting the machine state at the time the abort switch was 
pressed, are displayed on the screen. Any breakpoints installed in 
the user code are removed, and the breakpoint table remains intact. 
Control is returned to the debugger.

Note You may wish to perform Òdouble-button resetÓ by 
pressing the RESET and ABORT switches at the same 
time. Release RESET first, wait seven seconds, and then 
release ABORT. This resets all onboard devices, as well 
as sending a SYSRESET* signal if the board is the 
VMEbus system controller. It also ignores the 
parameters stored in NVRAM, and starts debugger 
execution with the same ENV parameters as if you had 
used the command ENV;D.



General Information

1-21

1

Break

A break is generated by pressing and releasing the BREAK key on 
the current-console keyboard. Break does not generate an interrupt. 
The only time break is recognized is when characters are sent or 
received by the console port. Break removes any breakpoints in the 
user code and keeps the breakpoint table intact. Break also takes a 
snapshot of the machine state if the function was entered using 
SYSCALL. This machine state is then accessible to you for 
diagnostic purposes.

Many times it may be desirable to terminate a debugger command 
prior to its completion; for example, the display of a large block of 
memory. Break allows you to terminate the command.

Board Failure

The following conditions result in a board failure. These conditions 
also give a WARNING message, if possible:

❏ Board initialization error/failure

❏ Debugger object checksum error

❏ Configuration data (NVRAM ENV parameters) failure (i.e., 
checksum)

❏ Configuration data (NVRAM CNFG parameters) failure (i.e., 
checksum)

❏ Calculated MPU clock speed does not match the associative 
CNFG parameter

❏ Calculated BUS clock speed does not match the associative 
CNFG parameter

❏ Selftest error/failure

If the board is equipped with a board fail LED, the LED will be 
illuminated when a board failure occurs.



Restarting the System

1-22

1

SYSFAIL* Assertion and Negation (MVME230 x, MVME260x, MVME360x, and 
MVME460x)

On VMEbus boards, the board fail is the same as the SYSFAIL 
indicator. At reset or power-up, the debugger asserts the VMEbus 
SYSFAIL* line (refer to the VMEbus specification).

The SYSFAIL* line is negated if debugger initialization is done and 
if none of the board failure conditions have occurred. However, 
SYSFAIL* stays asserted if any of the board failure conditions have 
occurred. In this way, the state of the debugger is indicated to the 
user or VMEbus masters. In a multi-computer configuration, other 
VMEbus masters could view the pertinent control and status 
registers to determine which CPU is asserting SYSFAIL* in the 
event of a board failure. 

SYSFAIL* assertion and negation is also affected by the ENV 
command (refer to the ENV command in Chapter 3).

Notes Assert indicates a signal is active or true. Negate 
indicates a signal is inactive or false. These terms are 
used independently of the voltage levels (high or low) 
that they represent.

The asterisk (*) in the signal name SYSFAIL* denotes 
that the signal is true or valid when the it is low 
(SYSFAIL* is level sensitive).

MPU Clock Speed Calculation

The MPU clock speed is calculated and checked against the MPU 
clock speed parameter located in NVRAM, which you may set in 
the CNFG command. If the check fails, a warning message is 
displayed. The calculated clock speed is also checked against 
known clock speeds and tolerances.

Refer to Chapter 3 for information on setting the CNFG command 
parameters.



General Information

1-23

1

Disk I/O Support
The debugger can initiate disk input and output by communicating 
with intelligent disk controllers over the PCI bus. Disk support 
facilities built into the debugger consist of command-level disk 
operations, disk I/O system calls (only via one of the system call 
instructions) for use by user programs, and defined data structures 
for disk parameters (refer to Chapter 5 for information on system 
calls).

Parameters such as the address where the module is mapped and 
the type and number of devices attached to the controller module 
are kept in tables by PPCBug. Default values for these parameters 
are assigned at power-up and cold-start reset, but may be altered as 
described in Default PPCBug Controller and Device Parameters on 
page 1-27. 

You can obtain a list of supported controllers with the IOI 
command. Appendix E contains a list of the controllers presently 
supported, as well as a list of the default configurations for each 
controller. 

Blocks and Sectors

The logical block defines the unit of information for disk devices. A 
disk is viewed by PPCBug as a storage area divided into logical 
blocks. By default, the logical block size is set to 256 bytes for every 
block device in the system. The block size can be changed on a per 
device basis with the IOT command.

The sector defines the unit of information for the media itself, as 
viewed by the controller. The sector size varies for different 
controllers, and the value for a specific device can be displayed and 
changed with the IOT command.

When a disk transfer is requested, the start and size of the transfer 
is specified in blocks. PPCBug translates this into an equivalent 
sector specification, which is then passed on to the controller to 



Disk I/O Support

1-24

1

initiate the transfer. If the conversion from blocks to sectors yields 
a fractional sector count, an error is returned and no data is 
transferred.

Device Probe

A device probe with entry into the device descriptor table is done 
whenever a specified device is accessed. This happens when system 
calls .DSKRD, .DSKWR, .DSKCFIG, .DSKFMT, and .DSKCTRL, 
and commands IOC, IOP, IOT, MAR, MAW, and PBOOT are 
used. 

The device probe mechanism utilizes the SCSI commands Inquiry 
and Mode Sense. If the specified controller is non-SCSI, the probe 
simply returns a status of device present and unknown. The device 
probe makes an entry into the device descriptor table with the 
pertinent data. After an entry has been made, the next time a probe 
is done it simply returns with device present  status (pointer to 
the device descriptor). 

Disk I/O via Debugger Commands

The following debugger commands are provided for disk I/O. 
Refer to Chapter 3 for instructions for their use. When a command 
is issued to a particular controller LUN and device LUN, these 
LUNs are remembered in the debugger so that the next disk 
command uses the same controller and device. 

IOI (Input/Output Inquiry)

The IOI command is used to probe the system for all possible 
CLUN/DLUN combinations and display inquiry data for devices 
which support it. The device descriptor table only has space for 16 
device descriptors. With the IOI command, you can view the table 
and clear it if necessary. 



General Information

1-25

1

IOP (Physical I/O to Disk)

!
Caution

If you start the IOP format procedure, it must be 
allowed to complete (PPC1Bug> prompt returns) or else 
the disk drive may be totally disabled. This format 
procedure may take as long as half an hour.

The IOP command allows you to read or write blocks of data, or to 
format the specified device in a certain way. IOP creates a 
command packet from the arguments you specify, and then 
invokes the proper system call function to carry out the operation. 

IOT (I/O Configure)

The IOT command allows you to change any configurable 
parameters and attributes of the device. In addition, it allows you 
to see the controllers available in the system. 

IOC (I/O Control)

The IOC command allows you to send command packets as 
defined by the particular controller directly. IOC can also be used 
to look at the resultant device packet after using the IOP command. 

PBOOT (Bootstrap Operating System)

The PBOOT command reads an operating system or control 
program from the specified device into memory, and then transfers 
control to it. 

With the H option, PBOOT reads an operating system or control 
program from a specified device into memory, and then returns 
control to the debugger.



Disk I/O Support

1-26

1

Disk I/O via Debugger System Calls

All operations that actually access the disk are done directly or 
indirectly by debugger system calls. (The command-level disk 
operations provide a convenient way of using these system calls 
without writing and executing a program.) 

The following system calls are provided to allow user programs to 
do disk I/O: 

Refer to Chapter 5 for information on using these and other system 
calls.

To perform a disk operation, the debugger must present a 
particular disk controller module with a controller command 
packet which has been prepared for the particular type of controller 
module. (This is accomplished in the respective controller driver 
module.) Typically, the command packets are different for each of 
the controller modules. The system call facilities which do disk I/O 
accept a generalized (controller-independent) packet format as an 
argument, and translate it into a controller-specific packet, which is 
then sent to the specified device. Refer to the system call 
descriptions in Chapter 5 for details on the format and construction 
of these standardized user packets.

.DSKRD Disk read - system call to read blocks from a disk into 
memory 

.DSKWR Disk write - system call to write blocks from memory 
onto a disk 

.DSKCFIG Disk conÞgure - system call to change the 
conÞguration of the speciÞed device 

.DSKFMT Disk format - system call to send a format command 
to the speciÞed device 

.DSKCTRL Disk control - system call to implement any special 
device control functions that cannot be 
accommodated easily with any of the other disk 
functions



General Information

1-27

1

The packets which a controller module expects to receive vary from 
controller to controller. The disk driver module for the particular 
board module must take the standardized packet given to a trap 
function and create a new packet which is specifically tailored for 
the disk drive controller it is sent to. Refer to documentation on the 
particular controller module for the format of its packets. Refer to 
the IOC command in Chapter 3 for sending command packets.

Default PPCBug Controller and Device Parameters

PPCBug initializes the parameter tables for a default configuration 
of controllers (refer to Appendix E). If the system needs to be 
configured differently than this default configuration (for example, 
to use a different drive), then these tables must be changed. 

Use the IOT command to reconfigure the parameter table manually 
for any controller and/or device that is different from the default. 
This is a temporary change and is overwritten if a cold-start reset 
occurs. 

Disk I/O Error Codes

PPCBug returns an error code if an attempted disk operation is 
unsuccessful. Refer to Appendix F for an explanation of disk I/O 
error codes. 



Network I/O Support

1-28

1

Network I/O Support  
The network autoboot firmware provides the capability to boot the 
CPU through the ROM debugger using a network (local Ethernet 
interface) as the boot device. 

The booting process is executed in two distinct phases. 

❏ The first phase allows the diskless remote node to discover its 
network identify and the name of the file to be booted. 

❏ The second phase has the diskless remote node reading the 
boot file across the network into its memory. 

Figure 1-1 depicts the various modules (capabilities) and the 
dependencies of these modules that support the overall network 
boot function. They are described in the following paragraphs.

Physical Layer Manager Ethernet Driver

This driver surrounds and manages the Ethernet controller chip or 
module. Management includes the reception of packets, the 
transmission of packets, flushing of the receive buffer, and interface 
initialization.

This module ensures that the packaging and unpackaging of 
Ethernet packets is done correctly in the Boot PROM.

UDP and IP Modules

The Internet Protocol (IP) is designed for use in interconnected 
systems of packet-switched computer communication networks. 
The Internet Protocol provides for transmitting blocks of data 
called datagrams (hence User Datagram Protocol, or UDP) from 
sources to destinations, where sources and destinations are hosts 
identified by fixed length addresses.

The UDP and IP protocols are necessary for the TFTP and BOOTP 
protocols; TFTP and BOOTP require a UDP/IP connection.



General Information

1-29

1

Figure 1-1.  Network Boot Modules

1273 9401

Bootstrap Protocol
(BOOTP)
RFC 951

Boot Control Module
(Two phases)

Trivial File Transfer
Protocol (TFTP)

RFC 783

User Datagram
Protocol (UDP)

RFC 768

Internet Protocol (IP) 
RFC 791

Reverse Address
Resolution Protocol
(RARP) - RFC 903

Address Resolution
Protocol (ARP)

RFC 826

Ethernet Driver
Physical Layer

Manager



Network I/O Support

1-30

1

RARP and ARP Modules

The Reverse Address Resolution Protocol (RARP) basically consists 
of an identity-less node that broadcasts a ÒwhoamiÓ packet onto the 
Ethernet and waits for an answer. The RARP server fills an Ethernet 
reply packet up with the target's Internet Address and sends it.

The Address Resolution Protocol (ARP) basically provides a 
method of converting protocol addresses (e.g., IP addresses) to 
local area network addresses (e.g., Ethernet addresses). The RARP 
protocol module supports systems which do not support the 
BOOTP protocol (refer to BOOTP Module below).

BOOTP Module

The Bootstrap Protocol (BOOTP) basically allows a diskless client 
machine to discover its own IP address, the address of a server host, 
and the name of a file to be loaded into memory and executed. 

TFTP Module

The Trivial File Transfer Protocol (TFTP) is a simple protocol to 
transfer files. It is implemented on top of the Internet User 
Datagram Protocol (UDP or Datagram) so it may be used to move 
files between machines on different networks implementing UDP. 
The only thing it can do is read and write files from/to a remote 
server. 

Network Boot Control Module

The control capability of the Network Boot Control Module is 
needed to tie together all the necessary modules (capabilities) and 
to sequence the booting process. The booting sequence consists of 
two phases. The first is address determination and bootfile 
selection, and the second is file transfer. The first phase utilizes the 
RARP/BOOTP capability and the second phase utilizes the TFTP 
capability.



General Information

1-31

1

Network I/O Error Codes

PPCBug returns an error code if an attempted network operation is 
unsuccessful. Refer to Appendix H for an explanation of network 
I/O error codes. 

Multiprocessor Support (Remote Start)
The PowerPC board dual-port RAM feature makes the shared 
RAM available to remote processors as well as to the local 
processor. This can be done by the following method. This method 
can be enabled/disabled by the ENV command as its Remote Start 
Switch method.

Note PPCBug runs in single processor operation only.

Refer to Chapter 3 for information on setting the ENV command 
parameters.

Multiprocessor Control Register (MPCR) Method

A remote processor can initiate program execution in the local 
PowerPC board dual-port RAM by issuing a remote GO command 
using the Multiprocessor Control Register (MPCR). MPCR contains 
one of two words used to control communication between 
processors. The location of MPCR is calculated as local RAM size 
minus $1C000. The MPCR contents are organized as follows:

The status codes stored in the MPCR are of two types:

❏ Status returned (from the monitor) 

❏ Status set (by the bus master) 

The status codes that may be returned from the monitor are:

* N/A N/A N/A (MPCR)

NUL ($00) Wait; the initialization is not yet complete
E ($45) Code pointed to by the MPAR address is executing



Multiprocessor Support (Remote Start)

1-32

1

Code P is used only by the MVME260x, MVME360x, MVME460x, and 
MVME230x boards. You can only program FLASH memory by the MPCR 
method. See the .PFLASH system call for a description of the FLASH 
memory program control packet structure.

The status codes that may be set by the bus master are: 

The Multiprocessor Address Register (MPAR) contains the second 
of two words used to control communication between processors. 
The MPAR contents specify the address at which execution for the 
remote processor is to begin if the MPCR contains a G or B. The 
location of MPAR is calculated as MPCR plus 4. The MPAR is 
organized as follows: 

At power-up, the PPCBug self-test routines initialize RAM, 
including the memory locations used for multi-processor support 
(MPCR and MPAR). 

The MPCR contains $00 at power-up, indicating that initialization 
is not yet complete. As the initialization proceeds, the execution 
path comes to the routine that displays the prompt. Before sending 
the prompt, this routine places an R in the MPCR to indicate that 
initialization is complete. Then the prompt is sent. 

P ($50) Program FLASH Memory. The MPAR is set to the
address of the FLASH memory program control packet.

R ($52) Ready; the Þrmware monitor is watching for a change

G ($47) Initiate code at the MPAR address in a manner similar 
to the GD command.

B ($42) Initiate code at the MPAR address, with breakpoints 
enabled, in a manner similar to the GO command.

Q ($51) Query: Request for residual data, build it, and return its 
address in the MPAR.

S ($53) Start: Build residual data, then start code execution. The 
execution address is expected in the MPAR, (as with the 
GO command). Residual data is built and its address is 
loaded into r3 before execution begins.

* * * * (MPAR)



General Information

1-33

1

If no terminal is connected to the port, the MPCR is still polled to 
see whether an external processor requires control to be passed to 
the dual-port RAM. If a terminal does respond, the MPCR is polled 
for the same purpose while the serial port is being polled for user 
input.

A G placed in the MPCR by a remote processor indicates that the Go 
Direct type of transfer is requested (as with the GD command). A B 
in the MPCR indicates that breakpoints are to be armed before 
control is transferred (as with the GO command). 

In either sequence, an E is placed in the MPCR to indicate that 
execution is underway just before control is passed to RAM. (Any 
remote processor could examine the MPCR contents.) 

If the code being executed in dual-port RAM is to re-enter PPCBug, 
a system call using function $0063 (SYSCALL .RETURN) returns 
control to PPCBug with a new display prompt. Note that every time 
PPCBug returns to the prompt, an R is moved into the MPCR to 
indicate that control can be transferred once again to a specified 
RAM location.

Data and Address Sizes
Data and address sizes are defined as follows:

A byte is eight bits, numbered 0 through 7, with bit 0 being the least 
significant.

A half-word is 16 bits, numbered 0 through 15, with bit 0 being the 
least significant.

A word is 32 bits, numbered 0 through 31, with bit 0 being the least 
significant.



Byte Ordering

1-34

1

Byte Ordering
The MPU on the PowerPC board is programmed to big-endian byte 
ordering. Any attempt to use little-endian byte ordering will 
immediately render the debugger unusable.



2

2-1

2Using the Debugger

Entering Commands
The debugger is command-driven and performs its various 
operations in response to commands that you enter at the 
keyboard. When the PPC1-Bug>  prompt appears on the screen, the 
debugger is ready to accept commands.

What you enter is stored in an internal buffer. Execution begins 
only after you press the Return key, allowing you to correct entry 
errors, if necessary, using the control characters (refer to Control 
Characters on page 2-7). After the debugger executes the command, 
the prompt reappears. 

However, if the command causes execution of target code (for 
example GO) then control may or may not return to the debugger, 
depending on what the program does. For example, if a breakpoint 
has been specified, then control returns to the debugger when the 
breakpoint is encountered during execution of the user program. 
For more about this, refer to the GD, GO, and GT command 
descriptions in Chapter 3.

Alternately, the user program could return to the debugger by 
means of the System Call Handler routine .RETURN (refer to 
Chapter 5).

Command Syntax

A debugger command is made up of the following parts:

❏ The command name

❏ Any required arguments, delineated with either a space or 
comma (precede the first argument with a space)



Entering Commands

2-2

2 ❏ Any required options. Precede an option or a string of 
options with a semi-colon (;). If no option is selected, the 
default options are used.

Command entry is either uppercase or lowercase.

Command Arguments

The following arguments are common to many of the commands. 
Additional arguments are defined in the description of the 
particular command in which they occur.

Use either a space or a comma as a delimiter between arguments. 
You may select the default value for an argument by inserting a pair 
of commas in place of the argument.

EXP

The EXP (expression) argument can be one or more numeric values 
separated by the arithmetic operators: 

EXP Expression (refer to EXP below)

ADDR Address (refer to ADDR on page 2-4)

COUNT Count; this is a numeric expression and has the same 
syntax as EXP (refer to EXP below)

RANGE A range of memory addresses speciÞed with a pair of 
arguments, either ADDR ADDR or ADDR : COUNT

TEXT An ASCII string of up to 255 characters, delimited at 
each end by the single quote mark (')

PORT Port Number (refer to PORT on page 2-6)

+ plus 

- minus 

* multiply by



Using the Debugger

2-3

2

Numeric values may be expressed in either hexadecimal, decimal, 
octal, or binary by immediately preceding them with the proper 
base identifier.

If no base identifier is specified, then the numeric value is assumed 
to be hexadecimal.

A numeric value may also be expressed as a string literal of up to 
four characters. The string literal must begin and end with the 
single quote mark ('). The numeric value is interpreted as the 
concatenation of the ASCII values of the characters. This value is 
right-justified, as any other numeric value would be.

Evaluation of an expression is always from left to right unless 
parentheses are used to group part of the expression. There is no 
operator precedence. Subexpressions within parentheses are 
evaluated first. Nested parenthetical subexpressions are evaluated 
from the inside out.

/ divide by 

& logical AND 

<< shift left 

>>  shift right 

Data Type Base
IdentiÞe
r

Example

Integer Hexadecimal $ $FFFFFFFF

Integer Decimal & &1974, &10-&4

Integer Octal @ @456

Integer Binary % %1000110

String Literal
Numeric Value 
(Hexadecimal)

'A' 41

'ABC' 414243

'TEST' 54455354



Entering Commands

2-4

2 Valid expression examples:

The total value of the expression must be between 0 and 
$FFFFFFFF.

ADDR

The syntax for the ADDR argument is similar to the syntax accepted 
by the PowerPC one-line assembler. All control addressing modes 
are allowed. Refer to Addressing Modes in Chapter 4.

ADDR may also be specified in the address + offset form.

ADDR Formats

The ADDR format is:

HexadecimalNumber {[^S]|[^s]|[^U]|[^u]}|Rn

Enter ADDR as a hexadecimal number (e.g., 20000 for address 
$00020000). The address, or starting address of a range, can be 
qualified by a suffix, either ^S or ^s for supervisor address space, 
or ^U or ^u for user address space. The default, when the suffix is 
not specified, is supervisor.

Expression Result (Hex)

FF0011 FF0011

45+99 DE

&45+&99 90

@35+@67+@10 5C

%10011110+%1001 A7

88<<4 880

AA&F0 A0

<< represents shift-left
& represents logical AND



Using the Debugger

2-5

2Once a qualifier has been entered, it remains valid for all addresses 
entered for that command sequence, until either the debugger is 
reentered or another qualifier is provided.

In the alternate register number (Rn) form, the debugger uses the 
address contained in MPU Register Rn, where n is 0 through 31 (i.e., 
0, 1, . . . 31).

If the address range specified as ADDR ADDR, with a size option 
of either H (half-word) or W (word), data at the second (ending) 
address is acted on only if the second address is a proper boundary 
for a half-word or word. Otherwise, the range is truncated so that 
the last byte acted upon is at an address that is a proper boundary.

Offset Registers

Eight pseudo-registers (Z0-Z7) called offset registers are used to 
simplify the debugging of relocatable and position-independent 
modules. The listing files in these types of programs usually start at 
an address (normally 0) that is not the one at which they are loaded, 
so it is harder to correlate addresses in the listing with addresses in 
the loaded program. The offset registers solve this problem by 
taking into account this difference and forcing the display of 
addresses in a relative address+offset format. Offset registers have 
adjustable ranges and may even have overlapping ranges. The 
range for each offset register is set by two addresses, base and top, 
both of which are standard in a given 64-bit offset register. 
Specifying the base and top addresses for an offset register sets its 
range. In the event that an address falls in two or more offset 
registers' ranges, the one that yields the least offset is chosen.

Note Relative addresses are limited to 1MB (5 digits), 
regardless of the range of the closest offset register.



Entering Commands

2-6

2 PORT

The PORT argument is the logical number of the port to be used to 
input or output. Valid port numbers which may be used for these 
commands are as follows:

Command Options

Many commands have one or more options, represented in 
boldface type in the command descriptions. Precede an option or a 
string of options with a semi-colon (;). If no option is entered, the 
commandÕs default options are used.

0 or 00 Terminal port 0 (console port) is used for interactive 
user input and output (the default), or may also be 
used for the graphics adapter device. This port is 
labeled COM1 or SER1 or DEBUG on the PowerPC 
board or transition module.

1 or 01 Terminal port 1 (host port) is the default for 
downloading, uploading, concurrent mode, and 
transparent modes. This port is labeled either COM2 
or SER2 on the PowerPC board or transition module.



Using the Debugger

2-7

2Control Characters

Some commands, such as CNFG, MM, or RM, allow you to edit 
parameter fields or the contents of registers or memory. You may 
use the following control characters to scroll through the listed 
items:

You may use the following control characters for limited editing 
while entering commands at the PPC1-Bug>  prompt:

V or v Go to the next Þeld, register, or memory location. This is 
the default, and remains in effect until changed by entering 
one of the other special characters.

^ Back up to the previous Þeld register, or memory location. 
This remains in effect until changed by entering one of the 
other special characters.

= Re-open the same Þeld register, or memory location.

. Terminate the command, and return to PPC1-Bug>  
prompt

DEL Delete: move the cursor back one position and erase the 
character at the new cursor position. If a printer port is 
conÞgured (hardcopy mode), a slash (/) character is typed 
along with the deleted character.

CTRL-h Performs the same function as DEL.

CTRL-x Cancel line: move the cursor to the beginning of the line.
If a printer port is conÞgured (hardcopy mode), a 
<CR><LF> sequence is issued along with another 
PPC1-Bug>  prompt.

CTRL-d Redisplay the entire command line entered on the 
following line

CTRL-a Repeat the previous line.
This happens only at the command line. The last line 
entered is redisplayed but not executed. The cursor is 
positioned at the end of the line. You may enter the line as 
is or you can add more characters to it. You can edit the line 
by backspacing and typing over old characters.



Entering and Debugging Programs

2-8

2 The XON and XOFF characters in effect for the terminal port may 
be entered to control the output from any debugger command, if 
the XON/XOFF protocol is enabled (default). The characters 
initialized by PPCBug are (you may change them with the PF 
command):

Entering and Debugging Programs
There are various ways to enter a user program into system 
memory for execution. One way is to create the program using the 
Assembler/Disassembler, entering the program one source line at 
a time. After each source line is entered, it is assembled and the 
object code is loaded to memory. Refer to Chapter 4 for information 
on using the PPCBug Assembler/Disassembler.

Another way is to download an object file from a host system. The 
program must be in S-record format (refer to Appendix D) and may 
have been assembled or compiled on the host system. Alternately, 
you may create a program using the Assembler/Disassembler, and 
store the program to the host using the DU command. A 
communication link must exist between the host system and 
PowerPC board port 1 (Refer to the board installation and use 
manual). Later, download the file from the host to PowerPC board 
memory with the LO command.

 Once the object code has been loaded into memory, you can set 
breakpoints if desired and run the code or trace through it.

System Call Routines in User Programs
Access to various debugger routines is provided via the System 
Call Handler. This gives a convenient way of doing character 
input/output and many other useful operations so that you do not 
have to write these routines into the target code.

CTRL-s Wait: halt console output (XON)

CTRL-q Resume console output (XOFF).



Using the Debugger

2-9

2The System Call handler is accessible through the SC (system call) 
instruction, with exception vector $00C00 (System Call Exception).

Refer to Chapter 5 for details on the routines available and how to 
invoke them from within a user program.

Preserving the Operating Environment
This section explains how to avoid contaminating the operating 
environment of the debugger. PPCBug uses some of the PowerPC 
board onboard resources to contain temporary variables and 
exception vectors. If the resources that PPCBug relies upon are 
disturbed, PPCBug may not function reliably.

If your application enables translation through the Memory 
Management Unit (MMU), and utilizes resources of the debugger 
(e.g., system calls), your application must create the necessary 
translation tables for the debugger to have access to its various 
resources. The debugger honors the enabling of the MMU; it does 
not alter or disable translation.

Memory Requirements

The debugger requires approximately 768KB (maybe less) of 
read/write memory. The debugger will allocate this memory from 
the top of memory. For example, on a system which contains 64 
megabytes ($04000000) of read/write memory (i.e., DRAM), the 
debugger's memory page will be located at $03F80000 to 
$03FFFFFF.

This memory space is used by the debugger for program stack, I/O 
buffers, variables, and register files. If an user program is loaded 
(e.g., booted, S-Records) into memory, and if this program is 
utilizing the debugger's programmatic interface (i.e., system calls), 
the program must not modify this allocated memory.



Preserving the Operating Environment

2-10

2 Whenever the host hardware is reset, the target IP is initialized to 
$00004000 (i.e., just above the memory space of the exception vector 
table), and the target pseudo stack pointer is initialized to the 
starting location of the debugger's read/write memory space. The 
target IP will be set to the appropriate address if a program load 
operation (e.g., the PBOOT command) is initiated.

Note that user programs should handle the stack area properly in 
that it should not write starting at the initialized location. Some 
compilers and assemblers may write to the stack prior to 
decrementing the stack.

This read/write memory space that is allocated for the debugger, 
and by the debugger, may increase in future releases. To properly 
compensate for the increased read/write memory requirements, 
user programs may utilized the target register R1 as indicator for 
the top (plus 1) of usable memory.

Exception Vectors

The following exception vectors are reserved for use by the 
debugger:

These vectors may be taken over under a userÕs application. 
However, prior to returning control to the debugger these vectors 
must be restored for proper operation of the affected features.

MPU Registers

Certain MPU registers must be preserved for their specific uses.

00100 - System Reset Used for the abort switch soft reset feature

00700 - Program Used for instruction breakpoints

00C00 - System Call Used for the System Call Handler

02000 - Run Mode Used for instruction tracing



Using the Debugger

2-11

2MPU Register SPR275

MPU register SPR275 is reserved for usage by the debugger. If 
SPR275 is to be used by the user program, it must be restored prior 
to utilizing debugger resources (system calls) and or returning 
control to the debugger.

MPU Registers SPR272-SPR274

These MPU registers are utilized by debugger as scratch registers.

Context Switching
Context switching is the switching from the debugger state to the 
user (target) state, or vice versa. This switching occurs upon the 
invocation of either the GD, GN, GO, GT, T, or TT commands, or 
the return from user state to the debugger state.

When the context switch transitions from the user state to the 
debugger state, the following MPU registers are captured:     

PPC603-based boards: 

R0-R31 General Purpose Registers

FR0-FR31 Floating Point Unit Data Registers

SR0-SR15 Segment Registers

SPRn Special Purpose Registers (n is 1, 8, 9, 18, 19, 22, 25, 26, 
27 268, 269, 275, 282, 287, 528 - 543, 976 - 981, 1008, 
1010)

IP Instruction Pointer (copy of SPR26)

MSR Machine State Register (copy of SPR27)

CR Condition Register

FPSCR Floating Point Status/Control Register 



Context Switching

2-12

2

When the context switch transitions from the debugger state to the 
user state, the following MPU registers are restored:     

PPC604-based boards: 

R0-R31 General Purpose Registers

FR0-FR31 Floating Point Unit Data Registers

SR0-SR15 Segment Registers

SPRn Special Purpose Registers (n is 1, 8, 9, 18, 19, 22, 25, 26, 
27 268, 269, 275, 282, 287, 528 - 543, 1008, 1010, 1013, 
1023)

IP Instruction Pointer (copy of SPR26)

MSR Machine State Register (copy of SPR27)

CR Condition Register

FPSCR Floating Point Status/Control Register 

PPC603-based boards:

R0-R31 General Purpose Registers

FR0-FR31 Floating Point Unit Data Registers

SPRn Special Purpose Registers (n is 1, 8, 9, 275, 1010)

IP Instruction Pointer, copied to SPR26

MSR Machine State Register, copied to SPR27

CR Condition Register

FPSCR Floating Point Status/Control Register 

PPC604-based boards:

0-R31 General Purpose Registers

FR0-FR31 Floating Point Unit Data Registers

SPRn Special Purpose Registers (n is 1, 8, 9, 275, 1010, 
1013, 1023)

IP Instruction Pointer, copied to SPR26

MSR Machine State Register, copied to SPR27

CR Condition Register

FPSCR Floating Point Status/Control Register 



Using the Debugger

2-13

2Note that on a restoration context switch, registers whose 
perspectives feature MMU characteristics and operating modes of 
the MPU are not restored. The debugger honors the user's MMU 
configuration. If the user's program wishes to utilize the 
programmatic interface (i.e., system calls) of the debugger, it must 
maintain the address translation of 1 to 1, and the I/O resources 
utilized by the debugger must be data cache inhibited.

Floating Point Support
The MD and MM commands allow display and modification of 
floating point data in memory. Use either the MD command or the 
MM command to assemble or disassemble floating point 
instructions.

Valid data types that can be used when modifying a floating point 
data register or a floating point memory location:

When entering data in single or double precision format, observe 
the following rules:

❏ The sign field is the first field and is a binary field.

❏ The exponent field is the second field and is a hexadecimal 
field.

❏ The mantissa field is the last field and is a hexadecimal field.

Integer Data Types

Byte 12
Half-Word 1234
Word 12345678

Floating Point Data Types

Single Precision Real 1_FF_7FFFFF
Double Precision Real 1_7FF_FFFFFFFFFFFFF
ScientiÞc Notation 
(decimal)

-3.12345678901234501_E+123



Floating Point Support

2-14

2 ❏ The sign field, the exponent field, and at least the first digit of 
the mantissa field must be present (any unspecified digits in 
the mantissa field are set to zero).

❏ Each field must be separated from adjacent fields by an 
underscore.

❏ All the digit positions in the sign and exponent fields must be 
present.

Single Precision Real

The single precision real format would appear in memory as:

A single precision number takes 4 bytes in memory.

Double Precision Real

The double precision real format would appear in memory as:

A double precision number takes 8 bytes in memory.

Note The single and double precision formats have an 
implied integer bit (always 1).

1-bit sign Þeld (1 binary digit)
8-bit biased exponent Þeld (2 hex digits, Bias = $7F)

23-bit fraction Þeld (6 hex digits)

1-bit sign Þeld (1 binary digit)
11-bit biased exponent Þeld (3 hex digits, Bias = $3FF)
52-bit fraction Þeld (13 hex digits)



Using the Debugger

2-15

2Scientific Notation

The scientific notation format provides a convenient way to enter 
and display a floating point decimal number. Internally, the 
number is assembled into a packed decimal number and then 
converted into a number of the specified data type.

Entering data in this format requires the following fields:

❏ An optional sign bit (+ or -).

❏ One decimal digit followed by a decimal point.

❏ Up to 17 decimal digits (at least one must be entered).

❏ An optional Exponent field that consists of:

Ð An optional underscore.

Ð The Exponent field identifier, letter E.

Ð An optional Exponent sign (+, -).

Ð From 1 to 3 decimal digits.

For more information about the floating point unit, refer to the 
PowerPC 603 RISC Microprocessor User's Manual, the PowerPC 604 
RISC Microprocessor UserÕs Manual, or the PowerPC 750 RISC 
Microprocessor UserÕs Manual.





3

3-1

3Debugger Commands

Introduction
This chapter contains descriptions of each debugger command, 
with one or more examples of each. The debugger commands are 
listed in Table 3-1.

Debugger Commands
Each of the individual command is described in the following 
pages. The command syntax is shown using the symbols explained 
in Chapter 2.

Table 3-1.  Debugger Commands 

Command Description
AS One Line Assembler
BC Block of Memory Compare
BF Block of Memory Fill
BI Block of Memory Initialize
BM Block of Memory Move
BR Breakpoint Insert  
NOBR Breakpoint Delete
BS Block of Memory Search
BV Block of Memory Verify
CM Concurrent Mode  
NOCM No Concurrent Mode
CNFG ConÞgure Board Information Block
CS Checksum
CSAR PCI ConÞguration Space READ Access (NOTE 2)
CSAW PCI ConÞguration Space WRITE Access (NOTE 2)
DC Data Conversion
DMA Move Block of Memory
DS One Line Disassembler
DU Dump S-Records
ECHO Echo String
ENV Set Environment



Debugger Commands

3-2

3
FORK Fork Idle MPU at Address (NOTE 2)
FORKWR Fork Idle MPU with Registers (NOTE 2)
GD Go Direct (Ignore Breakpoints)
GEVBOOT Global Environment Variable Boot (NOTE 1)
GEVDEL Global Environment Variable Delete (NOTE 1)
GEVDUMP Global Environment Variable(s) Dump (NOTE 1)
GEVEDIT Global Environment Variable Edit (NOTE 1)
GEVINIT Global Environment Variable Initialization (NOTE 1)
GEVSHOW Global Environment Variable(s) Display (NOTE 1)
GN Go to Next Instruction
GO Go Execute User Program
GT Go to Temporary Breakpoint
HE Help
IDLE Idle Master MPU (NOTE 2)
IOC I/O Control for Disk
IOI I/O Inquiry
IOP I/O Physical (Direct Disk Access)
IOT I/O Teach for ConÞguring Disk Controller
IRD Idle MPU Register Display (NOTE 2)
IRM Idle MPU Register Modify (NOTE 2)
IRS Idle MPU Register Set (NOTE 2)
LO Load S-Records from Host
MA Macro DeÞne/Display  
NOMA Macro Delete
MAE Macro Edit
MAL Enable Macro Listing  
NOMAL Disable Macro Listing
MAR Load Macros
MAW Save Macros
MD, MDS Memory Display
MENU System Menu
MM Memory Modify
MMD Memory Map Diagnostic
MS Memory Set
MW Memory Write
NAB Automatic Network Boot
NAP Nap MPU (NOTE 2)
NBH Network Boot Operating System, Halt
NBO Network Boot Operating System
NIOC Network I/O Control
NIOP Network I/O Physical

Table 3-1.  Debugger Commands (Continued)

Command Description



Debugger Commands

3-3

3

Notes 1. This command was added at revision 1.8 of PPCBug, 
dated 10/05/95.

2. This command was added at Revision 3.1 of PPCBug, 
dated 2/26/97.

NIOT Network I/O Teach (ConÞguration)
NPING Network Ping
OF Offset Registers Display/Modify
PA Printer Attach  
NOPA Printer Detach
PBOOT Bootstrap Operating System
PF Port Format  
NOPF Port Detach
PFLASH Program FLASH Memory
PS Put RTC into Power Save Mode
RB ROMboot Enable  
NORB ROMboot Disable
RD Register Display
REMOTE Remote
RESET Cold/Warm Reset
RL Read Loop
RM Register Modify
RS Register Set
RUN MPU Execution/Status (NOTE 2)
SD Switch Directories
SET Set Time and Date
SROM SROM Examine/Modify (NOTE 2)
SYM Symbol Table Attach  
NOSYM Symbol Table Detach
SYMS Symbol Table Display/Search
T Trace
TA Terminal Attach
TIME Display Time and Date
TM Transparent Mode
TT Trace to Temporary Breakpoint
VE Verify S-Records Against Memory
VER Revision/Version Display
WL Write Loop

Table 3-1.  Debugger Commands (Continued)

Command Description



3

AS - One-Line Assembler

3-4

3Debugger Commands

AS - One-Line Assembler

Command Input

AS ADDR

Description

The AS command provides access to the one-line assembler. It is 
synonymous with the Memory Modify (MM) command when used 
with the DI option (MM ADDR ;DI). Refer to MM - Memory Modify 
on page 3-129 for details on using the MM command. Refer to 
Chapter 4 for information on using the one-line assembler.



BC - Block of Memory Compare

3-5

3

BC - Block of Memory Compare

Command Input

BC RANGE ADDR [;B|H|W]

Options

Description

The BC command compares the contents of memory defined by 
RANGE with another place in memory, beginning at ADDR.

The option field is only allowed when RANGE is specified using a 
COUNT. In this case, the B, H, or W defines the size of the data that 
the COUNT is referring to. For example, a COUNT of 4 with an 
option of W would mean to compare 4 words (16 bytes). The default 
data type is word.

No confirmation is printed if the memory being compared matches. 
If the memory does not match, each mismatch is displayed. If the 
RANGE beginning address is greater than or equal to the end 
address, an error message is displayed and no comparison takes 
place.

For the following examples, assume that memory blocks 20000-
20020 and 21000-21020 contain identical data.

Examples

Example 1: Compare the memory, with nothing printed.

PPC1-Bug>BC 20000 2001F 21000 <Return>
Effective address: 00020000
Effective address: 0002001F
Effective address: 00021000
PPC1-Bug>

B Byte

H Half-word

W Word



BC - Block of Memory Compare

3-6

3

Example 2: Compare the memory, with nothing printed.

PPC1-Bug>BC 20000:20 21000;B <Return>
Effective address: 00020000
Effective count  : &32
Effective address: 00021000
PPC1-Bug>

Example 3: Create a mismatch (using the MM command), and 
prints out the mismatches.

PPC1-Bug>MM 2100F;B <Return>
0002100F 21? 0. <Return>
PPC1-Bug>

PPC1-Bug>BC 20000:20 21000;B <Return>
Effective address: 00020000
Effective count  : &32
Effective address: 00021000
0002000F|21 0002100F|00
PPC1-Bug>



BF - Block of Memory Fill

3-7

3

BF - Block of Memory Fill

Command Input

BF RANGE data [increment] [;B|H|W]

Arguments

Options

Description

The BF command fills the specified range of memory with a data 
pattern (data). If an increment is specified, then data is incremented 
by this value following each write, otherwise data remains a 
constant value. 

A decrementing pattern may be accomplished by entering a 
negative increment. The data you enter is right-justified in either a 
byte, half-word, or word field (as specified by the data field length 
selected). The default field length is W (word).

data Data pattern to be written to memory.
If data does not Þt into the selected data Þeld length, then 
leading bits are truncated to make it Þt. If truncation 
occurs, then a message is printed stating the data pattern 
which was actually written (or initially written if you 
speciÞed an increment).

increment Value that data is incremented following each write.
If increment does not Þt into the data Þeld size, then leading 
bits are truncated to make it Þt. If truncation occurs, then a 
message is printed stating the increment which was 
actually used.

B Byte

H Half-word

W Word



BF - Block of Memory Fill

3-8

3

If the upper address of the range is not on the correct boundary for 
an integer multiple of the data to be stored, then data is stored to the 
last boundary before the upper address. No address outside of the 
specified range is ever disturbed in any case. The Effective 
address  messages displayed by the command show exactly where 
data was stored.

Examples

Example 1: For this example, assume that memory from $20000 
through $2002F is clear.

Because no option is specified, the length of the data field defaults 
to word.

PPC1-Bug>BF 20000,2001F 4E71 <Return>
Effective address: 00020000
Effective address: 0002001F
PPC1-Bug>

PPC1-Bug>MD 20000:18;H <Return>
00020000 0000 4E71 0000 4E71  0000 4E71 0000 4E71 ..Nq..Nq..Nq..Nq
00020010 0000 4E71 0000 4E71  0000 4E71 0000 4E71 ..Nq..Nq..Nq..Nq
00020020 0000 0000 0000 0000  0000 0000 0000 0000 ................

Example 2: For this example, assume that memory from $20000 
through $2002F is clear.

The specified data does not fit into the specified data field size, the 
data is truncated, and the Data =  message is output.

PPC1-Bug>BF 20000:10 4E71;B <Return>
Effective address: 00020000
Effective count  : &16
Data = $71
PPC1-Bug>

PPC1-Bug>MD 20000:18;H <Return>
00020000 7171 7171 7171 7171  7171 7171 7171 7171 qqqqqqqqqqqqqqqq
00020010 0000 0000 0000 0000  0000 0000 0000 0000 ................
00020020 0000 0000 0000 0000  0000 0000 0000 0000 ................
PPC1-Bug>



BF - Block of Memory Fill

3-9

3

Example 3: For this example, assume that memory from $20000 
through $2002F is clear.

The word pattern does not fit evenly in the given range. Only one 
word is written and the Effective address  messages reflect the 
fact that data is not written all the way up to the specified address.

PPC1-Bug>BF 20000,20006 12345678;W <Return>
Effective address: 00020000
Effective address: 00020003
PPC1-Bug>

PPC1-Bug>MD 20000:18;H <Return>
00020000 1234 5678 0000 0000  0000 0000 0000 0000 .4Vx............
00020010 0000 0000 0000 0000  0000 0000 0000 0000 ................
00020020 0000 0000 0000 0000  0000 0000 0000 0000 ................

Example 4: For this example, assume memory from $20000 through 
$2002F is clear.

PPC1-Bug>BF 20000:18 0 1;H <Return>
Effective address: 00020000
Effective count  : &48
PPC1-Bug>

PPC1-Bug>MD 20000:18;H <Return>
00020000 0000 0001 0002 0003  0004 0005 0006 0007 ................
00020010 0008 0009 000A 000B  000C 000D 000E 000F ................
00020020 0010 0011 0012 0013  0014 0015 0016 0017 ................
PPC1-Bug>



BI - Block of Memory Initialize

3-10

3

BI - Block of Memory Initialize

Command Input

BI RANGE [;B|H|W]

Options

Description

The BI initializes parity for a block of memory. The BI command is 
non-destructive; if the parity is correct for a memory location, then 
the contents of that memory location are not altered.

The limits of the block of memory to be initialized may be specified 
using a RANGE. The option field specifies the data size in which 
memory is initialized if RANGE is specified using a COUNT. The 
option also specifies the size of data element to which the COUNT 
refers. The length option is valid only when a COUNT is used. The 
default data type is word.

BI works through the memory block by reading from locations and 
checking parity. If the parity is not correct, then the data read is 
written back to the memory location in an attempt to correct the 
parity. If the parity is not correct after the write, then the message 
RAM FAIL  is output and the address is given.

This command may take several seconds to initialize a large block 
of memory.

Examples

Example 1:

PPC1-Bug>BI 0:10000;B <Return>
Effective address: 00000000
Effective count  : &65536
PPC1-Bug>

B Byte

H Half-word

W Word



BI - Block of Memory Initialize

3-11

3

Example 2: For this example, assume system memory from $0 to 
$000FFFFF.

PPC1-Bug>BI 0,1FFFFF <Return>
Effective address: 00000000
Effective address: 001FFFFF
RAM FAIL AT $00100000
PPC1-Bug>



BM - Block of Memory Move

3-12

3

BM - Block of Memory Move

Command Input

BM RANGE ADDR [;B|H|W]

Options

Description

The BM command copies the contents of the memory addresses 
defined by RANGE to another place in memory, beginning at 
ADDR.

The option field is only allowed when RANGE is specified using a 
COUNT. In this case, the B, H, or W defines the size of the data that 
the COUNT is referring to. For example, a COUNT of 4 with an 
option of W would mean to move 4 words (or 16 bytes) to the new 
location. If an option field is specified without a COUNT in the 
RANGE, an error results.

The BM command is useful for patching assembly code in memory 
(refer to example 2).

The default data size is word.

Examples

Example 1: For this example, assume that memory from 20000 to 
2000F is clear.

PPC1-Bug>MD 21000:10;H <Return>
00021000 5448 4953 2049 5320  4120 5445 5354 2121 THIS IS A TEST!!
00021010 0000 0000 0000 0000  0000 0000 0000 0000 ................
PPC1-Bug>

B Byte

H Half-word

W Word



BM - Block of Memory Move

3-13

3

PPC1-Bug>BM 21000 2100F 20000 <Return>
Effective address: 00021000
Effective address: 0002100F
Effective address: 00020000
PPC1-Bug>

PPC1-Bug>MD 20000:10;H <Return>
00020000 5448 4953 2049 5320  4120 5445 5354 2121 THIS IS A TEST!!
00020010 0000 0000 0000 0000  0000 0000 0000 0000 ................
PPC1-Bug>

Example 2: Patch assembly code in memory

For this example, assume that you had a short program in memory 
at address 20000 (displayed with the MD command).

PPC1-Bug>MD 20000 2000F;DI <Return>
00020000 3C401000  ADDIS       R2,R0,$1000
00020004 60420001  ORI         R2,R2,$1
00020008 7C631378  OR          R3,R3,R2
0002000C 7CA53214  ADD         R5,R5,R6
PPC1-Bug>

To insert an ANDC between the OR instruction and the ADD 
instruction, Block Move the object code down four bytes to make 
room for the ANDC.

PPC1-Bug>BM 20008 20010 2000C <Return>
Effective address: 00020008
Effective address: 0002000F
Effective address: 0002000C
PPC1-Bug>

PPC1-Bug>MD 20000 20014;DI <Return>
00020000 3C401000  ADDIS       R2,R0,$1000
00020004 60420001  ORI         R2,R2,$1
00020008 7C631378  OR          R3,R3,R2
0002000C 7C631378  OR          R3,R3,R2
00020010 7CA53214  ADD         R5,R5,R6
PPC1-Bug>

Enter the ANDC at address 20008 using the MM command.

PPC1-Bug>MM 20008;DI <Return>
00020008 7C631378  OR          R3,R3,R2? ANDC R3,R3,R2 <Return>
00020008 7C631078  ANDC        R3,R3,R2
0002000C 7C631378  OR          R3,R3,R2? . <Return>
PPC1-Bug>



BM - Block of Memory Move

3-14

3

PPC1-Bug>MD 20000 20014;DI <Return>
00020000 3C401000  ADDIS       R2,R0,$1000
00020004 60420001  ORI         R2,R2,$1
00020008 7C631078  ANDC        R3,R3,R2
0002000C 7C631378  OR          R3,R3,R2
00020010 7CA53214  ADD         R5,R5,R6
PPC1-Bug>



BR - Breakpoint Insert   NOBR - Breakpoint Delete

3-15

3

BR - Breakpoint Insert  
NOBR - Breakpoint Delete

Command Input

BR [ADDR[:COUNT]]

NOBR [ADDR]

Description

The BR command sets a target code instruction address as a 
breakpoint address for debugging purposes. If, during target code 
execution, a breakpoint with 0 count is found, the target code state 
is saved in the target registers and control is returned back to the 
debugger. This allows you to see the actual state of the processor at 
selected instructions in the code.

Up to eight breakpoints can be defined. The breakpoints are kept in 
a table which is displayed each time either BR or NOBR is used. If 
an address is specified with the BR command, that address is 
added to the breakpoint table. 

The COUNT argument specifies how many times the instruction at 
the breakpoint address must be fetched before a breakpoint is 
taken. The COUNT, if greater than zero, is decremented with each 
fetch. Every time a breakpoint with zero count is found, a 
breakpoint handler routine prints the CPU state on the screen and 
control is returned to the debugger.

NOBR is used for deleting breakpoints from the breakpoint table. 
If an address is specified, then that address is removed from the 
breakpoint table. If NOBR is entered with no address, then all 
entries are deleted from the breakpoint table and the empty table is 
displayed.



BR - Breakpoint Insert   NOBR - Breakpoint Delete

3-16

3

Examples

Example 1: Set some breakpoints.

PPC1-Bug>BR 1E000,1E200 1E700:&12 <Return>
BREAKPOINTS
0001E000 0001E200
0001E700:C
PPC1-Bug>

Example 2: Delete specified breakpoint.

PPC1-Bug>NOBR 1E200 <Return>
BREAKPOINTS
0001E000 0001E700:C
PPC1-Bug>

Example 3: Delete all breakpoints.

PPC1-Bug>NOBR <Return>
BREAKPOINTS
PPC1-Bug>



BS - Block of Memory Search

3-17

3

BS - Block of Memory Search

Command Input

BS RANGE TEXT [;B|H|W]

or

BS RANGE data [mask] [;B|H|W [,N] [,V]]

Arguments

Options

Description

The BS command searches the specified range of memory for a 
match with a an ASCII text string or a data pattern. This command 
has three modes.

TEXT An ASCII text string that is matched against a range of 
memory

data Data pattern that is matched against a range of memory

mask A string that indicates which bit positions in data to compare 
to memory (a one is compared, a zero is not). The default is 
all ones.

B Byte

H Half-word

W Word

N Non-aligned. The search is conducted on a byte-by-byte 
basis, rather than by half-words or words, regardless of the 
size of data.

V Verify. Addresses and data are displayed only when the 
memory contents do not match data.



BS - Block of Memory Search

3-18

3

String Search

In the string search mode, a search is carried out for the TEXT 
argument. The size option Þeld indicates whether the COUNT 
Þeld of RANGE refers to bytes, half-words, or words. If RANGE 
is not speciÞed using a COUNT, then no options are allowed. If 
a match is found, then the address of the Þrst byte of the match 
is output.

Data Search

In the Data Search mode, a data pattern (data) is matched 
against a range of memory. The size option indicates whether 
the COUNT Þeld in RANGE refers to bytes, half-words, or 
words (the default is word).

The following actions occur during a data search:

1. data is right-justified and leading bits are truncated or leading 
zeros are added as necessary to make the data pattern the 
specified size.

2. A compare is made with successive bytes, half-words, or 
words (depending on the size in effect) within the range for a 
match with data. 

Comparison is made only on those bits at bit positions 
corresponding to a one in mask. If mask is not specified, the 
default is all ones (all bits are compared). The size of the mask 
is taken to be the same size as the data.

If the N (non-aligned) option is selected, data is searched for 
on a byte-by-byte basis, rather than by half-words or words, 
regardless of the size of data. This is useful if a half-word (or 
word) pattern is being searched for, but is not expected to lie 
on a half-word (or word) boundary.

3. If a match is found, then the address of the first byte of the 
match is output along with the memory contents. If a mask 
was in use, then the actual data at the memory location is 
displayed, rather than the data with the mask applied.



BS - Block of Memory Search

3-19

3

Data VeriÞcation

If the V (verify) option has been selected, the addresses and data 
are displayed only when the memory contents do not match 
data. Otherwise this mode is identical to the Data Search mode.

For all three modes, information on matches is output to the screen 
in a four-column format. If more than 24 lines of matches are found, 
then output is inhibited to prevent the first match from rolling off 
the screen. A message is printed at the bottom of the screen 
indicating that there is more to display. To resume output, you 
should simply press any character key. To cancel the output and 
exit the command, you should press the BREAK key.

If a match is found (or, in the case of Mode 3, a mismatch) with a 
series of bytes of memory whose beginning is within the range but 
whose end is outside of the range, then that match is output and a 
message is output stating that the last match does not lie entirely 
within the range. You may search non-contiguous memory with 
this command without causing a Bus Error.

For the examples below, assume the following data is in memory.

00030000 0000 0045 7272 6F72  2053 7461 7475 733D ...Error Status=
00030010 3446 2F2F 436F 6E66  6967 5461 626C 6553 4F//ConfigTableS
00030020 7461 7274 3A00 0000  0000 0000 0000 0000 tart:...........

Examples

Example 1: Mode 1: The string is not found, so a message is output.

PPC1-Bug>BS 30000 3002F 'Task Status' <Return>
Effective address: 00030000
Effective address: 0003002F
-not found-
PPC1-Bug>

Example 2: Mode 1: The string is found, and the address of its first 
byte is output.

PPC1-Bug>BS 30000 3002F 'Error Status' <Return>
Effective address: 00030000
Effective address: 0003002F
00030003
PPC1-Bug>



BS - Block of Memory Search

3-20

3

Example 3: Mode 1: The string is found, but it ends outside of the 
range, so the address of its first byte and a message are output.

PPC1-Bug>BS 30000 3001F 'ConfigTableStart' <Return>
Effective address: 00030000
Effective address: 0003001F
00030014
-last match extends over range boundary-
PPC1-Bug>

Example 4: Mode 1, using RANGE with COUNT and size option: 
COUNT is displayed in decimal, and address of each occurrence of 
the string is output.

PPC1-Bug>BS 30000:30 't';B <Return>
Effective address: 00030000
Effective count  : &48
0003000A   0003000C   00030020   00030023
PPC1-Bug>

Example 5: Mode 2, using RANGE with COUNT: COUNT is 
displayed in decimal bytes, and the data pattern is found and 
displayed.

PPC1-Bug>BS 30000:18,2F2F;H <Return>
Effective address: 00030000
Effective count  : &48
00030012|2F2F
PPC1-Bug>

Example 6: Mode 2, the default size is word and the data pattern is 
not found, so a message is output.

PPC1-Bug>BS 30000,3002F 3D34 <Return>
Effective address: 00030000
Effective address: 0003002F
-not found-
PPC1-Bug>

Example 7: Mode 2, the size is half-word and non-aligned option is 
used, so the data pattern is found and displayed.

PPC1-Bug>BS 30000,3002F 3D34;HN <Return>
Effective address: 00030000
Effective Address: 0003002F
0003000F|3D34
PPC1-Bug>



BS - Block of Memory Search

3-21

3

Example 8: Mode 2, using RANGE with COUNT, mask option, and 
size option: COUNT is displayed in decimal, and the actual 
unmasked data patterns found are displayed.

PPC1-Bug>BS 30000:30 60,F0;B <Return>
Effective address: 00030000
Effective count  : &48
00030006|6F   0003000B|61   00030015|6F   00030016|6E
00030017|66   00030018|69   00030019|67   0003001B|61
0003001C|62   0003001D|6C   0003001E|65   00030021|61
PPC1-Bug>

Example 9: Mode 3, on a different block of memory, mask option, 
scan for words with low nibble nonzero: two locations failed to 
verify.

PPC1-Bug>BS 3000 1FFFF 0000 000F;VH <Return>
Effective address: 00003000
Effective address: 0001FFFF
0000C000|E501   0001E224|A30E
PPC1-Bug>



BV - Block of Memory Verify

3-22

3

BV - Block of Memory Verify

Command Input

BV RANGE data [increment] [;B|H|W]

Arguments

Options

Description

The BV command compares the specified range of memory against 
a data pattern. If an increment is specified, then data is incremented 
by this value following each comparison, otherwise data remains a 
constant value. A decrementing pattern may be accomplished by 
entering a negative increment. The data you entered is right-
justified in either a byte, half-word, or word field (as specified by 
the option selected). The default field length is W (word).

If the range is specified using a COUNT, then the COUNT is 
assumed to be in terms of the data size.

data Data pattern to be compared to memory.
If data does not Þt into the selected data Þeld length, then 
leading bits are truncated to make it Þt. If truncation 
occurs, then a message is printed stating the data pattern 
which was actually written (or initially written if you 
speciÞed an increment).

increment Value that data is incremented following each write.
If increment does not Þt into the data Þeld size, then leading 
bits are truncated to make it Þt. If truncation occurs, then a 
message is printed stating the increment which was 
actually used.

B Byte

H Half-word

W Word



BV - Block of Memory Verify

3-23

3

If the upper address of the range is not on the correct boundary for 
an integer multiple of the data to be verified, data is verified to the 
last boundary before the upper address. No address outside of the 
specified range is read from in any case. The Effective address  
messages displayed by the command show exactly the extent of the 
area read from.

Examples

Example 1: For this example, assume memory from $20000 to 
$2002F is as indicated. In this example the default data element size 
is word, and the block verify was successful (i.e., nothing printed).

PPC1-Bug>MD 20000:18;H <Return>
00020000 4E71 4E71 4E71 4E71  4E71 4E71 4E71 4E71 NqNqNqNqNqNqNqNq
00020010 4E71 4E71 4E71 4E71  4E71 4E71 4E71 4E71 NqNqNqNqNqNqNqNq
00020020 4E71 4E71 4E71 4E71  4E71 4E71 4E71 4E71 NqNqNqNqNqNqNqNq
PPC1-Bug>

PPC1-Bug>BV 20000 2001F 4E714E71 <Return>
Effective address: 00020000
Effective address: 0002001F
PPC1-Bug>

Example 2: For this example, assume memory from $20000 to 
$2002F is as indicated. Mismatches are printed out.

PPC1-Bug>MD 20000:18;H <Return>
00020000 0000 0000 0000 0000  0000 0000 0000 0000 ................
00020010 0000 0000 0000 0000  0000 0000 0000 0000 ................
00020020 0000 0000 0000 0000  0000 4AFB 4AFB 4AFB ..........J{J{J{
PPC1-Bug>

PPC1-Bug>BV 20000:30 0;B <Return>
Effective address: 00020000
Effective count  : &48
0002002A|4A   0002002B|FB   0002002C|4A   0002002D|FB
0002002E|4A   0002002F|FB
PPC1-Bug>



BV - Block of Memory Verify

3-24

3

Example 3: For this example, assume memory from $20000 to 
$2002F is as indicated. Size is half-word, mismatches are printed 
out.

PPC1-Bug>MD 20000:18;H <Return>
00020000 0000 0001 0002 0003  0004 0005 0006 0007 ................
00020010 0008 FFFF 000A 000B  000C 000D 000E 000F ................
00020020 0010 0011 0012 0013  0014 0015 0016 0017 ................
PPC1-Bug>

PPC1-Bug>BV 20000:18 0 1;H <Return>
Effective address: 00020000
Effective count  : &48
00020012|FFFF
PPC1-Bug>



CM - Concurrent Mode   NOCM - No Concurrent Mode

3-25

3

CM - Concurrent Mode  
NOCM - No Concurrent Mode

Command Input

CM [[PORT] [ID-STRING] [BAUD] [PHONE-NUMBER]]|[;A]|[;H] 

NOCM 

Arguments

ID-STRING Device (i.e. modem) with which communications 
is established before the concurrent mode session 
is activated. 
If no identiÞer string is speciÞed, CM will use an 
identiÞer string of ÒDUMBÓ by default. 
The identiÞer string must be one that is supported. 
If the identiÞer string is not found in the supported 
list, CM displays an error message. 

BAUD Baud rate. 
The baud rate must be supported by the device 
and must be supported by the debugger (110, 300, 
600, 1200, 2400, 4800, 9600, 19200). 
If no baud rate is speciÞed, CM uses the default 
baud rate for the device. This is also displayed 
along with the supported devices. If the baud rate 
is not supported, CM displays an error message. 

PHONE-NUMBER Phone number.
This may be a string of any alphanumeric 
characters. This string is passed directly to the 
device driver if needed. In the case of modems, this 
string is added to the dial recognition string. If the 
phone number Þeld is not speciÞed, a dial-in 
condition is assumed (wait for call).



CM - Concurrent Mode   NOCM - No Concurrent Mode

3-26

3

Options

Description

The CM command activates a mode in which everything that 
appears on the system console terminal is also echoed to the port 
specified by the PORT argument.

PORT is checked for inbound characters. These are also echoed to 
the system console terminal. If no port is specified, CM uses port 1 
by default.

PORT must already be configured. The baud rate need not be 
specified because the port is reconfigured prior to activation. The 
preconfiguration of the port is done by using the PF (Port Format) 
command. If PORT is not currently assigned, CM displays an error 
message. 

For any reason you may abort the concurrent mode setup by 
pressing the BREAK key. This may be necessary if the modem is not 
responding to commands from the debugger.

The NOCM command terminates concurrent mode which was 
activated by the CM command. Depending on the device and the 
port specified with the CM command, the communication link is 
appropriately closed. 

Examples

Example1: List all devices supported by the debugger:

PPC1-Bug>CM;A <Return>
Concurrent Devices Supported
Device Name (ID-STRING) Default Baud
DUMB                    9600
UDS2662                 1200
UDS2980                 1200
UDS3382                 1200

A List all supported devices.

H Displays whether concurrent mode is active or not, and if it 
is, what secondary port number is being used by it.



CM - Concurrent Mode   NOCM - No Concurrent Mode

3-27

3

Example 2: Activate the concurrent mode.

PPC1-Bug>CM <Return>
Concurrent Mode Active 

This results in the default settings remaining intact:

Example 3: Activate the concurrent mode, with changes to the 
modem and the phone number.

PPC1-Bug>CM,,UDS2662,,16024383020 <Return>
Concurrent Mode Active 

This results in the following changes:

Example 4: Activate the concurrent mode, with changes to the 
modem and the phone number.

PPC1-Bug>CM,,UDS2662,,16024383020 <Return>
Concurrent Mode Active 
PPC1-Bug>CM,,UDS2662,,16024383020 <Return>
Concurrent Mode Already Active 
PPC1-Bug> 

An error occurs on the second entry because the concurrent mode 
is already active.

Example 3: Activate the concurrent mode, with changes to the 
modem, baud rate, and phone number.

PPC1-Bug>CM 2 UDS2980 1200 18007777777 <Return>
Concurrent Mode Active 
PPC1-Bug> 

PORT 1 

ID-STRING DUMB

BAUD 9600 (default if ID-STRING is ÒDUMBÓ) 

PHONE-NUMBER null

PORT 1 

ID-STRING UDS2662

BAUD 1200 (default if ID-STRING is ÒUDS2662Ó) 

PHONE-NUMBER 16024383020



CM - Concurrent Mode   NOCM - No Concurrent Mode

3-28

3

This results in the following changes:

Example 5: Activate the concurrent mode, with error.

PPC1-Bug>CM 2,,DUMB <Return>
Concurrent Mode Setup Failure 
PPC1-Bug> 

Example 6: Terminate the concurrent mode.

PPC1-Bug>NOCM <Return>
Concurrent Mode Terminated 
PPC1-Bug> 

Example 7: Attempt to terminate the previously terminated 
concurrent mode.

PPC1-Bug>NOCM <Return>
Concurrent Mode Not Active 
PPC1-Bug> 

PORT 2 

ID-STRING UDS2980

BAUD 1200

PHONE-NUMBER 18007777777



CNFG - Configure Board Information Block

3-29

3

CNFG - Configure Board Information Block

Command Input

CNFG [;[I] [M]]

Options

Description

The CNFG command displays the configure the board information 
block, and allows you to change the contents. The board 
information block, which is resident within the Non-Volatile RAM 
(NVRAM), contains various elements detailing specific operation 
parameters of the PowerPC board. which have been set up by the 
factory. The CNFG command does not describe the elements and 
their use. 

The board information block contents are checksummed for 
validation purposes. This checksum is the last element of the block. 

Refer to the board installation and use manual for the location, and 
contents of the board information block, and the size and logical 
offset of each element.

The parameters that are quoted are left-justified ASCII strings 
padded with space characters. The quotes are displayed to indicate 
the size of the string. Parameters that are not quoted are considered 
data strings, and data strings are right-justified. The data strings are 
padded with zeroes if the length is not met. 

The CNFG information is configured in the factory. There is no 
need ever to modify these values unless the NVRAM gets 
corrupted.

I Initialize the board information block to zero.

M Modify the board information block.



CNFG - Configure Board Information Block

3-30

3

Option M allows you to modify the board information block. When 
invoked, this command prompts for entry into each field. You may 
change the displayed value by typing a new value, followed by the 
Return key. To leave the field unaltered, press the Return key 
without typing a new value.

You may also enter a special character, either at the prompt or after 
typing new data, for scrolling through the fields. The special 
characters are:

At the end of the modification session, you are prompted whether 
or not to update the NVRAM. Enter Y to cause the update to occur; 
any other response terminates the update (disregards all changes). 
The update also recalculates the checksum. 

Note Be careful when modifying parameters. Correct board 
operation relies upon these parameters.

In the event of corruption of the board information block, the 
command displays question marks for nondisplayable characters. 
A warning message is also displayed in the event of a checksum 
failure.

Note When upgrading from an earlier version of the 
firmware, prior to PPC1BUG 1.7, it may be necessary to 
match the processor and bus clock frequencies to those 
displayed by the firmware during sign on. This only 

V or v Go to the next Þeld. This is the default, and remains in 
effect until changed by entering one of the other special 
characters.

^ Back up to the previous Þeld. This remains in effect until 
changed by entering one of the other special characters.

= Re-open the same Þeld

. Terminate the CNFG command, and return control to the 
debugger



CNFG - Configure Board Information Block

3-31

3

needs to be done if the firmware complains that there is 
a mismatch in values. To correct it, invoke CNFG;M 
from the firmware command line to correct the 
mismatched values.

Examples

Example 1: Shown below is a sample of a valid board information 
block: 

PPC1-Bug>CNFG <Return>
Board (PWA) Serial Number = “MOT000061050”
Board Identifier = “MVME2603-001”
Artwork (PWA) = “01-W3015F01A”
MPU Clock Speed = “233”
Bus Clock Speed = “067”
Ethernet Address = 08003E20C983
Primary SCSI Identifier = “07”
System Serial Number = “163725”
System Identifier = “Motorola Series E603-166P”
License Identifier = “12345678”
PPC1-Bug>

Example 2: Shown below is a board information block with 
corrupted data.

PPC1-Bug>CNFG <Return>
WARNING: Board Information Block Checksum Error
Board (PWA) Serial Number = "????????????"
Board Identifier          = "????????????????"
Artwork (PWA) Identifier  = "????????????????"
MPU Clock Speed           = "????"
Bus Clock Speed           = "????"
Ethernet Address          = 000000000000
Primary SCSI Identifier   = "??"
System Serial Number      = "?????????????"
System Identifier         = "?????????????????????????"
License Identifier        = "12345678 "
PPC1-Bug>



CNFG - Configure Board Information Block

3-32

3

Example 3: Modify the Board Information Block.

PPC1-Bug>CNFG;M <Return>
WARNING: Board Information Block Checksum Error 
Board (PWA) Serial Number = "????????????"? MOT000061050 
Board Identifier          = "????????????????"? MVME2603-001 
Artwork (PWA) Identifier  = "????????????????"? 01-W3015F01A 
MPU Clock Speed           = "????"? 233 
Bus Clock Speed           = "????”? 067 
Ethernet Address          = 000000000000? 08003E20C983 
Primary SCSI Identifier   = "??"? 07 
System Serial Number      = "163725       "
System Identifier         = "Motorola Series E603-166P "
License Identifier        = "12345678 "
Update Non-Volatile RAM (Y/N)? y 
PPC1-Bug> 

Example 4: View the Board Information Block and the updates.

PPC1-Bug>CNFG 
Board (PWA) Serial Number = "MOT000061050"
Board Identifier          = "MVME2603-001 "
Artwork (PWA) Identifier  = "01-W3015F01A "
MPU Clock Speed = “233”
Bus Clock Speed           = "067”
Ethernet Address          = 08003E20C983 
Primary SCSI Identifier   = "07" 
System Serial Number      = "163725       "
System Identifier         = "Motorola Series E603-166P "
License Identifier        = "12345678 "
PPC1-Bug> 



CS - Checksum

3-33

3

CS - Checksum

Command Input

CS RANGE [;B|H|W]

Options

Description

The CS command calculates a checksum to verify the contents of a 
block of memory. It uses the same checksum routine that is run at 
system start-up. The checksum algorithm works as follows:

1. The checksum variable is set to zero.

2. Each data element is added to the checksum. If a carry is 
generated, a one is added to the checksum variable.

This process is repeated for each data element until the ending 
address is reached.

The option field serves both as a data size identifier and scale factor 
if a COUNT is specified as part of the RANGE. The size option is 
byte, half-word, or word for the items checked. The default data 
size is word.

The addresses used in the RANGE parameters can be provided in 
two forms:

❏ An absolute address (32-bit maximum).

❏ An expression using a displacement + relative offset register.

B Byte

H Half-word

W Word



CS - Checksum

3-34

3

Examples

Example 1: Default size is word.

PPC1-Bug>CS 1000 2000 <Return>
Effective address: 00001000
Effective address: 00001FFF
Checksum: FF8D3E87
PPC1-Bug>

Example 2: Size is set to half-word.

PPC1-Bug>CS 1000 2000;H <Return>
Effective address: 00001000
Effective address: 00001FFF
Checksum: 3E15
PPC1-Bug>

Example 3: Size is set to byte, COUNT is in hexadecimal.

PPC1-Bug>CS FF800000:400;B <Return>
Effective address: FF800000
Effective count  : &1024
Checksum: 1C
PPC1-Bug>

Example 4: Default size is word, COUNT is in hexadecimal.

PPC1-Bug>CS FF800000:400 <Return>
Effective address: FF800000
Effective count  : &4096
Checksum: 00B50D05
PPC1-Bug>



CSAR - PCI Configuration Space READ Access

3-35

3

CSAR - PCI Configuration Space READ Access

Command Input

CSAR busnum devnum function addr [;B|H|W]

Options

Description

The CSAR command reads the location in PCI configuration space 
of the device at the PCI bus number specified by:

CSAR displays the value read.

Example: To read the register at offset 8 of the PCI device on PCI bus 0, 
which has a device ID of 12 (decimal), and function 0 of that device, do:

PPC1-Bug>csar 0 c 0 8<Return>
Read Data = 01000013
PPC1-Bug>

B Byte

H Half-word

W Word (default)

busnum = the PCI bus number to be read

devnum = the device number to be read

function = the device function number to be read

addr = the offset into the device conÞguration registers. 
addr must be between 0 and 255 decimal.

size (optional) = the size of the location to be read



CSAW - PCI Configuration Space WRITE Access

3-36

3

CSAW - PCI Configuration Space WRITE Access

Command Input

CSAW busnum devnum function addr data [;B|H|W]

Options

Description

The CSAW command writes data to the location of the device in 
PCI configuration space at the PCI bus number specified by:

Example: To write the hexadecimal number a into the byte register at offset 
3C of the PCI device on PCI bus 0, which has a device ID of 12 (decimal), 
and function 0 of that device, do:

PPC1-Bug>csaw 0 c 0 3C a;b<Return>
PPC1-Bug>

B Byte

H Half-word

W Word (default)

busnum = the PCI bus number to be read

devnum = the device number to be read

function = the device function number to be read

addr = the offset into the device conÞguration registers. 
addr must be between 0 and 255 decimal.

data = the data that should be written

size (optional) = the size of the location to be read



DC - Data Conversion

3-37

3

DC - Data Conversion

Command Input

DC EXP | ADDR [;[B] [O] [A]]

Options

Description

The DC command calculates an expression into a single numeric 
value. This equivalent value is displayed in its hexadecimal and 
decimal representation. If the numeric value could be interpreted as 
a signed negative number (i.e., if the most significant bit of the 32-
bit internal representation of the number is set), then both the 
signed and unsigned interpretations are displayed.

Examples

Example 1:

PPC1-Bug>DC 10 <Return>
          00000010 = $10 = &16
PPC1-Bug>

Example 2:

PPC1-Bug>DC &10-&20 <Return>
SIGNED  : FFFFFFF6 = -$A = -&10
UNSIGNED: FFFFFFF6 = $FFFFFFF6 = &4294967286
PPC1-Bug>

Example 3:

PPC1-Bug>DC 123+&345+@67+%1100001 <Return>
          00000314 = $314 = &788
PPC1-Bug>

B  Display the output in binary

O Display the output in octal

A Display the ASCII character equal to the value. If the value is 
greater than $7F, the A option displays NA.



DC - Data Conversion

3-38

3

Example 4:

PPC1-Bug>DC (2*3*8)/4 <Return>
          0000000C = $C = &12
PPC1-Bug>

Example 5:

PPC1-Bug>DC 55&F <Return>
          00000005 = $5 = &5
PPC1-Bug>

Example 6:

PPC1-Bug>DC 55>>1 <Return>
          0000002A = $2A = &42
PPC1-Bug>

Example 7:

PPC1-Bug>DC 1+2;B <Return>
DATA BIT: 33222222222211111111110000000000
NUMBER>>: 10987654321098765432109876543210
BINARY  : 00000000000000000000000000000011
PPC1-Bug>

Example 8:

PPC1-Bug>DC 1+2;BO <Return>
DATA BIT: 33222222222211111111110000000000
NUMBER>>: 10987654321098765432109876543210
BINARY  : 00000000000000000000000000000011
OCTAL   : 00000000003
PPC1-Bug>

Example 9:

PPC1-Bug>DC 1+2;BOA <Return>
DATA BIT: 33222222222211111111110000000000
NUMBER>>: 10987654321098765432109876543210
BINARY  : 00000000000000000000000000000011
OCTAL   : 00000000003
ASCII   : ETX
PPC1-Bug>



DC - Data Conversion

3-39

3

Example 10: For this example, assume R2=00030000 and the 
following data resides in memory:

00030000  11111111 22222222  33333333 44444444   ....""""3333DDDD

PPC1-Bug>DC R2 <Return>
          00030000 = $30000 = &196608
PPC1-Bug>



DMA - Block of Memory Move

3-40

3

DMA - Block of Memory Move

Note This command works for MVME160x series modules 
only.

Command Input

DMA RANGE ADDR VDIR AM BLK [;B|H|W] 

Arguments    

VDIR Direction of the transfer.
0 means the transfer occurs from the local bus to the VMEbus; 1 
means the transfer occurs from the VMEbus to the local bus.

AM VMEbus address modiÞer of the transfer. 
Refer to the VMEbus speciÞcation for the complete list of address 
modiÞers. The VMEbus transfer address must also support 
transfers with the selected address modiÞer. Refer to the 
applicable board installation and use manual.

BLK Block transfer mode, which can be one of the following:

0 Block transfers disabled.
1 The DMA controller executes D32 block transfer cycles on 

the VMEbus. In the block transfer mode, the DMA 
controller may execute byte and two-byte cycles at the 
beginning and ending of a transfer in non-block transfer 
mode.

2 Block transfers disabled.
3 The DMA controller executes D64 block transfer cycles on 

the VMEbus. In the block transfer mode, the DMA 
controller may execute byte, two-byte, and four-byte 
cycles at the beginning and ending of a transfer in non-
block transfer mode. 



DMA - Block of Memory Move

3-41

3

Options

Description

The DMA command moves blocks of data from the local bus to the 
VMEbus, or from the VMEbus to the local bus. This command. 
utilizes the hardware capability of Direct Memory Access (DMA). 
Refer to the board installation and use manual for a detailed 
description of DMA. You can not perform a DMA from the local 
bus to the local bus, or from the VMEbus to the VMEbus.

The DMA command copies (DMAs) the contents of the memory 
addresses defined by RANGE to another place in memory, 
beginning at ADDR.

The option field is only allowed when RANGE is specified using a 
COUNT. In this case, the B, H, or W defines the size of the data to 
which the COUNT is referring. For example, a COUNT of four with 
an option of W means to move four words (or 16 bytes) to the new 
location. If an option field is specified without a COUNT in the 
RANGE, an error results. The default data type is word.

Refer to the VMEbus specification for the complete description of 
block transfer mode. The VMEbus transfer address must also 
support block transfers if enabled, refer to the applicable board 
installation and use manuals.

At the end of the transfer, the DMA command displays the 
completion status of the transfer. A completion status of $1 is a 
successful transfer. Any other completion status means that the 
transfer was not successful. This status comes directly from the 
hardware status from the DMA controller.

B Byte

H Half-word

W Word



DMA - Block of Memory Move

3-42

3

Note If the block transfer modes are used to transfer data 
make sure that your VMEbus and VME memory 
actually support the block transfer modes.

When the command is given on a non-VMEbus board, the 
following message is shown: 

This system does not host a VMEbus.

Be sure to set the high bit when specifying the address for the local 
memory. Setting the high bit directs the address to the PCI bus. The 
PCI bus actually strips the high bit and passes the address onward. 
When specifying the VMEbus address, be sure to specify the exact 
VME memory address (refer to the examples below). Refer to the 
board installation and use manual for information on the VMEbus.

Examples

Example 1: Transfer data from the VMEbus to the local bus with 
D32 block transfer cycles.

Fill memory on the VMEbus with an incrementing pattern (starts 
with a value of 0 and increments by 4). This makes it easier to 
illustrate some memory moves (DMAs) between the local bus and 
the VMEbus.

PPC1-Bug>BF C1000000 C2000000 0 4
Effective address: C1000000
Effective address: C1FFFFFF
PPC1-Bug>

Memory 
Location 

(Processor View)

As Used in 
the DMA 
Command

$0 $80000000

$4000 $80004000

$C1000000 $01000000

$C1002000 $01002000



DMA - Block of Memory Move

3-43

3

First a range is given for the source location of the data on the 
VMEbus. Note that this is an exact address on the VMEbus. (From 
the beginning of the VME memory ($01000000 to $01800000). 

The destination for the memory transfer is back to local memory on 
the board beginning at $0. Notice, that on the destination address 
the high bit is set. This is due to the PCI bus, the PCI bus masks the 
high bit and the actual data transfer maps to $0 (the beginning of 
local memory).

The VDIR argument is specified as $1 here because the transfer in 
this case should occur from the VMEbus to the local bus. The AM 
parameter is specified as $D to indicate (Extended Supervisory 
Data Access) for a simple data transfer. In this case, the block 
transfer was set to $1 which means that the DMA controller 
executes D32 block transfer cycles on the VMEbus.

PPC1-Bug>DMA 01000000 01800000 80000000 1 d 1 <Return>
Effective address: 01000000
Effective address: 017FFFFF
Effective address: 80000000
DMA Completion Status =00000001
PPC1-Bug>

By displaying the local memory which was the destination for the 
transfer we can see that the data from the VMEbus was transferred 
to local memory.

PPC1-Bug>MDS 0 <Return>
00000000  00000000 00000004 00000008 0000000C  ................
00000010  00000010 00000014 00000018 0000001C  ................
00000020  00000020 00000024 00000028 0000002C  ... ...$...(...,
00000030  00000030 00000034 00000038 0000003C  ...0...4...8...<
00000040  00000040 00000044 00000048 0000004C  ...@...D...H...L
00000050  00000050 00000054 00000058 0000005C  ...P...T...X...\
00000060  00000060 00000064 00000068 0000006C  ...‘...d...h...l
00000070  00000070 00000074 00000078 0000007C  ...p...t...x...|
00000080  00000080 00000084 00000088 0000008C  ................
00000090  00000090 00000094 00000098 0000009C  ................
000000A0  000000A0 000000A4 000000A8 000000AC  ................
000000B0  000000B0 000000B4 000000B8 000000BC  ................
000000C0  000000C0 000000C4 000000C8 000000CC  ................
000000D0  000000D0 000000D4 000000D8 000000DC  ................
000000E0  000000E0 000000E4 000000E8 000000EC  ................



DMA - Block of Memory Move

3-44

3

000000F0  000000F0 000000F4 000000F8 000000FC  ................
00000100  00000100 00000104 00000108 0000010C  ................
00000110  00000110 00000114 00000118 0000011C  ................
00000120  00000120 00000124 00000128 0000012C  ... ...$...(...,
00000130  00000130 00000134 00000138 0000013C  ...0...4...8...<
00000140  00000140 00000144 00000148 0000014C  ...@...D...H...L
00000150  00000150 00000154 00000158 0000015C  ...P...T...X...\
00000160  00000160 00000164 00000168 0000016C  ...‘...d...h...l
00000170  00000170 00000174 00000178 0000017C  ...p...t...x...|
00000180  00000180 00000184 00000188 0000018C  ................
00000190  00000190 00000194 00000198 0000019C  ................
000001A0  000001A0 000001A4 000001A8 000001AC  ................
000001B0  000001B0 000001B4 000001B8 000001BC  ................
000001C0  000001C0 000001C4 000001C8 000001CC  ................
000001D0  000001D0 000001D4 000001D8 000001DC  ................
000001E0  000001E0 000001E4 000001E8 000001EC  ................
000001F0  000001F0 000001F4 000001F8 000001FC  ................
PPC1-Bug>

Example 2: Transfer data from the local bus to the VMEbus using 
D32 block transfer cycles.

PPC1-Bug>DMA 80000000 80800000 01000000 0 d 1 <Return>
Effective address: 80000000
Effective address: 807FFFFF
Effective address: 01000000
DMA Completion Status =00000001
PPC1-Bug>

We can use the block verify command to show that the 
incrementing pattern was copied to the destination VMEbus 
memory.

PPC1-Bug>BV C1000000 C1800000 0 4 <Return>
Effective address: C1000000
Effective address: C17FFFFF
PPC1-Bug>



DMA - Block of Memory Move

3-45

3

Example 3: Transfer data from the local bus to the VMEbus. First, 
show the data at the destination so we can see it change.

PPC1-Bug>MD 100000:40 <Return>
00100000  7C3043AF 7CFFFBBF 7C3143A7 48FFFFDF  |0C.|...|1C.H...
00100010  00000001 00FFFC0F 00000003 00FFFFFF  ................
00100020  00048003 00FFFFFF 00000008 00FFFEEF  ................
00100030  0000000F 00FFFFFF 0000000D 00FFFEEF  ................
00100040  00000000 00FFF10F 0000000E 00FFFD5F  ..............._
00100050  00000000 00FFF2EF 00000003 00FFFFBF  ................
00100060  0000000E 00FFFFFF 0000000A 00FFFEAF  ................
00100070  0000068E 00FFFFBF 00000001 00FFFEFF  ................
00100080  00000002 00FFF39F 00000002 00FFF39F  ................
00100090  00000001 00FFF91F 00000003 00FFFDDF  ................
001000A0  0000800F A0FFFFFF 0000020F 00FFF6EF  ................
001000B0  0000000D 00FFFFEF 0000200E 00FFF7FF  .......... .....
001000C0  00000004 00FFF88F 00000005 00FFFF2F  .............../
001000D0  00000009 00FFF84F 00000005 00FFFDDF  .......O........
001000E0  0008050F 00FFFFFF 0000000F 00FFFFFF  ................
001000F0  0000000D 00FFFF2F 00000008 00FFF7EF  ......./........
PPC1-Bug>DMA 80100000:40 01000000 0 d 0;W <Return>
Effective address: 80100000
Effective count  : &256
Effective address: 01000000
DMA Completion Status =00000001
PPC1-Bug>

In the above example, 256 bytes of data was moved from the local 
bus to the VMEbus. At the end of the transfer, the DMA command 
displays the completion status of the transfer.



DMA - Block of Memory Move

3-46

3

View the transferred data:

PPC1-Bug>MD C1000000:40 <Return>
C1000000  7C3043AF 7CFFFBBF 7C3143A7 48FFFFDF  |0C.|...|1C.H...
C1000010  00000001 00FFFC0F 00000003 00FFFFFF  ................
C1000020  00048003 00FFFFFF 00000008 00FFFEEF  ................
C1000030  0000000F 00FFFFFF 0000000D 00FFFEEF  ................
C1000040  00000000 00FFF10F 0000000E 00FFFD5F  ..............._
C1000050  00000000 00FFF2EF 00000003 00FFFFBF  ................
C1000060  0000000E 00FFFFFF 0000000A 00FFFEAF  ................
C1000070  0000068E 00FFFFBF 00000001 00FFFEFF  ................
C1000080  00000002 00FFF39F 00000002 00FFF39F  ................
C1000090  00000001 00FFF91F 00000003 00FFFDDF  ................
C10000A0  0000800F A0FFFFFF 0000020F 00FFF6EF  ................
C10000B0  0000000D 00FFFFEF 0000200E 00FFF7FF  .......... .....
C10000C0  00000004 00FFF88F 00000005 00FFFF2F  .............../
C10000D0  00000009 00FFF84F 00000005 00FFFDDF  .......O........
C10000E0  0008050F 00FFFFFF 0000000F 00FFFFFF  ................
C10000F0  0000000D 00FFFF2F 00000008 00FFF7EF  ......./........
PPC1-Bug>

Example 4: Transfer data from the VMEbus to the local bus.

Display the 64 bytes of data on the VMEbus which are to be 
transferred.

PPC1-Bug>MD C1000000:10 <Return>
C1000000  5A5A5A5A 5A5A5A5A 5A5A5A5A 5A5A5A5A  ZZZZZZZZZZZZZZZZ
C1000010  5A5A5A5A 5A5A5A5A 5A5A5A5A 5A5A5A5A  ZZZZZZZZZZZZZZZZ
C1000020  5A5A5A5A 5A5A5A5A 5A5A5A5A 5A5A5A5A  ZZZZZZZZZZZZZZZZ
C1000030  5A5A5A5A 5A5A5A5A 5A5A5A5A 5A5A5A5A  ZZZZZZZZZZZZZZZZ
PPC1-Bug>

Transfer the 64 bytes from the beginning of VMEbus memory to 
location $2000 in local memory. A display of the local memory 
shows the newly transferred data.



DMA - Block of Memory Move

3-47

3

PPC1-Bug>DMA 01000000:10 80002000 1 D 0 <Return>
Effective address: 01000000
Effective count  : &64
Effective address: 80002000
DMA Completion Status =00000001
PPC1-Bug>MD 00002000:10 <Return>
00002000  5A5A5A5A 5A5A5A5A 5A5A5A5A 5A5A5A5A  ZZZZZZZZZZZZZZZZ
00002010  5A5A5A5A 5A5A5A5A 5A5A5A5A 5A5A5A5A  ZZZZZZZZZZZZZZZZ
00002020  5A5A5A5A 5A5A5A5A 5A5A5A5A 5A5A5A5A  ZZZZZZZZZZZZZZZZ
00002030  5A5A5A5A 5A5A5A5A 5A5A5A5A 5A5A5A5A  ZZZZZZZZZZZZZZZZ

Example 5: Attempt to DMA to non-existent VMEbus memory. The 
command displays the DMA controller status register and the 
DMA controller counter registers.

PPC1-Bug>DMA 80000000:15 05000000 0 D 0;B <Return>
Effective address: 80000000
Effective count  : &21
Effective address: 05000000
DMA Completion Status =00000002
DMA Byte Counter              =00000000
DMA Local Bus Address Counter =80000015
DMA VMEbus Address Counter    =05000004
PPC1-Bug>



DS - One-Line Disassembler

3-48

3

DS - One-Line Disassembler

Command Input

DS ADDR [:COUNT | ADDR]

Description

The DS command enables the one-line disassembler. This command 
is synonymous with the Memory Display (MD) command when 
used with the DI option (MD ADDR;DI). Refer to MD, MDS - 
Memory Display on page 3-124 for details. Refer to Chapter 4 for 
information on using the one-line assembler.



DU - Dump S-Records

3-49

3

DU - Dump S-Records

Command Input

DU [PORT] RANGE [TEXT] [ADDR] [OFFSET] [;B|H|W]

Description

The DU command outputs data from memory in the form of 
Motorola S-records to a port you specified. If port is not specified, 
the S-records are sent to the host port, and the missing port number 
must be delimited by two commas.

A size option is allowed only if a COUNT was entered as part of the 
RANGE, and defines the units of the COUNT. The default data type 
is byte.

The optional TEXT argument is for text that will be incorporated 
into the header (S0) record of the block of records that will be 
dumped.

The optional ADDR argument is to allow you to enter an entry 
address for code contained in the block of records. This address is 
incorporated into the address field of the block termination record. 
If no entry address is entered, then the address field of the 
termination record will consist of zeros. The termination record will 
be an S7, S8, or S9 record, depending on the address entered. 
Appendix C has additional information on S-records.

You may also specify an optional offset in the OFFSET argument. 
The offset value is added to the addresses of the memory locations 
being dumped, to come up with the address which is written to the 
address field of the S-records. This allows you to create an S-record 
file which will load back into memory at a different location than 
the location from which it was dumped. The default offset is zero.

Note If an offset is to be specified but no entry address is to 
be specified, then two commas (indicating a missing 
field) must precede the offset to keep it from being 
interpreted as an entry address.



DU - Dump S-Records

3-50

3

Examples

Example 1: Dump memory from $20000 to $2002F to port 1.

PPC1-Bug>DU ,,20000 2002F <Return>
Effective address: 00020000
Effective address: 0002002F
PPC1-Bug>

Example 2: Dump 10 bytes of memory beginning at $30000 to the 
terminal screen (port 0).

PPC1-Bug>DU 0 30000:&10 <Return>
Effective address: 00030000
Effective count : &10
S0030000FC
S20E03000026025445535466084E4F7B
S9030000FC
PPC1-Bug>

Example 3: Dump memory from $20000 to $2002F to host (port 1). 
Specify a file named TEST in the header record and specify an entry 
point of $2000A.

PPC1-Bug>DU ,,20000 2002F 'TEST' 2000A <Return>
Effective address: 00020000
Effective address: 0002002F
PPC1-Bug>



ECHO - Echo String

3-51

3

ECHO - Echo String

Command Input

ECHO [PORT] {hexadecimal number} {'string'}

Description

The ECHO command displays strings to a configured port. ASCII 
strings can be entered by enclosing them in single quotes ('). To 
include a quote as part of a string, enter two consecutive quotes.

The hexadecimal number allows printing <NL>, <CR>, and other 
control symbols. A hexadecimal number must have two digits 
before it is displayed.

Note that one or more hexadecimal numbers and ASCII strings may 
be entered in the same command.

If the port number is not specified (substituted by commas), ECHO 
uses the current console port.

Examples

Example 1: Display the ASCII string to the current console port.

PPC1-Bug>ECHO ,,'quick brown fox jumps over the lazy dog' 0A <Return>
quick brown fox jumps over the lazy dog
PPC1-Bug>

Example 2: Send the ASCII string and a BELL character to port #1.

PPC1-Bug>ECHO 1 'this is a test' 07 <Return>
PPC1-Bug>

Example 3: In this example an error message results because the 
selected port is not configured.

PPC1-Bug>ECHO 2 'this is a test' <Return>
Logical unit $02 unassigned
PPC1-Bug>



ECHO - Echo String

3-52

3

Example 4: This example handles a string with quotes.

PPC1-Bug>ECHO ,, 'This is "PPCBUG"' <Return>
This is “PPCBUG”
PPC1-Bug>



ENV - Set Environment

3-53

3

ENV - Set Environment

Command Input

ENV [;[D]] 

Description

The ENV command allows you to view and configure all PPCBug 
operational parameters that are kept in Non-Volatile RAM 
(NVRAM). The operational parameters are saved in NVRAM and 
used whenever power is lost. (The NVRAM is also known as the 
Battery Backed Up RAM.)

Any time PPCBug uses a parameter from NVRAM, the NVRAM 
contents are first tested by checksum to insure the integrity of the 
NVRAM contents. In the instance of NVRAM checksum failure, 
certain default values are assumed.

The debugger operational parameters (which are kept in NVRAM) 
are not initialized automatically on power-up/warm reset. It is up 
to you to invoke the ENV command. Once the ENV command is 
invoked and executed without error, debugger default and/or user 
parameters are loaded into NVRAM along with checksum data. If 
any of the operational parameters have been modified, these new 
parameters will not be in effect until a reset or power-up condition. 

If the ENV command is invoked with the D option, ROM defaults 
will be loaded into NVRAM. If the ENV command is invoked 
without the D option, you are prompted to configure all 
operational parameters. You may change the displayed value by 
typing a new value, followed by the Return key. To leave the field 
unaltered, press the Return key without typing a new value.



ENV - Set Environment

3-54

3

You may also enter a special character, either at the prompt or after 
typing new data, for scrolling through the fields. The special 
characters are:

Programming The VMEbus Slave Image Map Decoders.

The VMEbus slave image map decoders allow a VMEbus master to 
access the resources on the local primary PCI bus, and control the 
type of access to those resources. These decoders are located in the 
Universe VMEbus interface chip. The following general procedure 
can be used with the ENV command to configure the VMEbus slave 
image map decoders. This is not the only procedure that can be 
used to program the map decoders. More complete information on 
this subject can be found in the UserÕs Manual for the Universe chip, 
the VMEbus specification, the PCI bus specification, and the 
ProgrammerÕs Guide for the specific board being used.

1. Determine the desired VMEbus base address. This is the 
starting, or lowest, address that any resource on the local PCI 
bus can be accessed on the VMEbus. This address must not 
allow an overlap of the UniverseÕs control and status registers 
or any other VMEbus resourceÕs address space. The first 
VMEbus slave decoder (for VME slave image 0) has a 4K-byte 
resolution but VMEbus slave images 1, 2, and 3, have a 64K-
byte resolution.

2. Determine the desired VMEbus bound address. This is the 
ending, or highest, address that any resource on the local PCI 
bus can be accessed on the VMEbus. The address on the 
VMEbus must lie within the window defined by the base and 
bound addresses to gain a response.

V or v Go to the next Þeld. This is the default, and remains in 
effect until changed by entering one of the other special 
characters.

^ Back up to the previous Þeld. This remains in effect until 
changed by entering one of the other special characters.

= Re-open the same Þeld

. Terminate the ENV command, and return control to the 
debugger



ENV - Set Environment

3-55

3

3. Determine any necessary VMEbus translation offset. The 
offset value is added to the VMEbus address to create the PCI 
bus address.

4. Determine the necessary VMEbus slave image control. The 
value used for slave image control is made up of several bit 
fields which specify how reads and writes will be processed 
by the Universe device. The desired value can be determined 
by progressively ORing together the selected bit fields 
described below.

To select the type of PCI address space that will respond in 
the defined VMEbus window, use the following:
0x00000000 for PCI Memory space, zero no bits are set.
0x00000001 for PCI I/O space.
0x00000002 for PCI Configuration space.

To lock PCI transactions resulting from VMEbus Read-
Modify-Writes, OR the following value with that chosen 
above: 0x00000040

To enable 64-bit PCI transactions, OR the following value 
with those chosen above: 0x00000080

To select the VMEbus address space accesses to decode, OR 
the value defined here with those chosen above:
0x00000000 for A16 space, zero no bits are set.
0x00010000 for A24 space.
0x00020000 for A32 space.

To select the mode of VMEbus accesses to decode, OR the 
value defined here with those chosen above:
0x00100000 for non-privileged.
0x00200000 for supervisor.
0x00300000 for both non-privileged and supervisor, two bits 
set.

To select the type of VMEbus accesses to decode, OR the 
value defined here with those chosen above:
0x00400000 for data.
0x00800000 for program.
0x00C00000 for both data and program, two bits are set.



ENV - Set Environment

3-56

3

To enable prefetch reads for incoming VMEbus block read 
cycles, OR the following value with those chosen above:
0x20000000

To enable posted writes of incoming data on the VMEbus, OR 
the following value with those chosen above: 0x40000000

To enable the selected VME Slave Image Map Decoder, OR 
the following value with those chosen above: 0x80000000

As an example, a control value of: 0xE0F20000
decodes A32, non-privileged and supervisor, data and 
program VMEbus space, with prefetch reads, and posted 
writes enabled.

It is the userÕs responsibility to ensure that the selected 
control bits are not destructive, and that the resources present 
on the VMEbus and PCI bus support the access and 
transaction controls chosen.

ENV Command Parameters

The parameters that can be configured with ENV are listed and 
described in your board-specific installation and use manual.

Systems with Wide SCSI Drives Running AIX

If AIX (or some other OS) is booted on a system with wide SCSI 
drives, and then the system is reset, PPCBug will not be able to 
access the wide SCSI drives. This problem may be corrected by 
running ENV and enabling PPCBug to reset the SCSI bus on startup 
as follows:

Local SCSI Bus Reset on Debugger Startup [Y/N] = N? y

This ENV change should be made to all PowerPlus architecture 
systems running AIX.

Note This problem is fixed in PPCBug release 3.2 and later.



ENV - Set Environment

3-57

3

LED/Serial Startup Diagnostic Codes

These codes can be displayed at key points in the initialization of 
the hardware devices. Should the debugger fail to come up to a 
prompt, the last code displayed will indicate how far the 
initialization sequence had progressed before stalling. The codes 
are enabled by an ENV parameter:

Serial Startup Code Master Enable [Y/N]=N?

A line feed can be inserted after each code is displayed to prevent it 
from being overwritten by the next code. This is also enabled by an 
ENV parameter:

Serial Startup Code LF Enable [Y/N]=N?

The list of LED/serial codes is included in the section on MPU, 
Hardware, and Firmware Initialization in Chapter 1.



FORK - Fork Idle MPU at Address

3-58

3

FORK - Fork Idle MPU at Address

Note This command is for multi-processor boards only.

Command Input

FORK MPU# ADDR

Description

The FORK command allows you to fork an idle processor to target 
code that is pointed to by the ADDR argument. The MPU# 
argument depends on your configuration and idle processors 
present. It is the target code's responsibility to load the processor's 
registers. Once a processor is forked, the only means back to the idle 
state would be by execution of the system call .IDLEMPU. Refer to 
the System Calls chapter in this manual for the description of the 
system call.

To inquire of the BUG about idle processors, refer to the RUN 
command.

Example

Fork processor #1 to address $10000.

PPC1-Bug>fork 1 10000
PPC1-Bug>



FORKWR - Fork Idle MPU with Registers

3-59

3

FORKWR - Fork Idle MPU with Registers

Note This command is for multi-processor boards only.

Command Input

FORKWR MPU#

Description

The FORKWR command allows you to fork an idle processor to 
target code. The associated register set is loaded before execution. 
The MPU# argument depends on your configuration and idle 
processors present.

The idle processor's registers can be examined/modified by the 
commands IRD, IRM, and IRS. Once a processor is forked, the only 
means back to the idle state would be by execution of the 
system call .IDLEMPU. Refer to the System Calls chapter in this 
manual for the description of the system call.

To inquire of the BUG about idle processors, refer to the RUN 
command.

Example

Fork processor #1.

PPC1-Bug>forkwr 1
PPC1-Bug>



GD - Go Direct (Ignore Breakpoints)

3-60

3

GD - Go Direct (Ignore Breakpoints)

Command Input

GD [ADDR]

Description

The GD command starts target code execution. If an address is 
specified, it is placed in the target IP. Execution starts at the target 
IP address. Unlike GO, breakpoints are not inserted.

Once execution of the target code has begun, control may be 
returned to the debugger by one of the following conditions:

❏ The abort or reset switch on the debugger host was pressed.

❏ An unexpected exception occurred.

Example

The following program resides at $20000.

PPC1-Bug>DS 20000:10 <Return>
00020000 3C600004  ADDIS       R3,R0,$4
00020004 60631000  ORI         R3,R3,$1000
00020008 7C641B78  OR          R4,R3,R3
0002000C 3CA00005  ADDIS       R5,R0,$5
00020010 60A51000  ORI         R5,R5,$1000
00020014 3CC00000  ADDIS       R6,R0,$0
00020018 90C40000  STW         R6,$0(R4) ($00041000)
0002001C 38840004  ADDI        R4,R4,$4
00020020 7F042840  CMPL        CRF6,0,R4,R5
00020024 409AFFF4  BC          4,26,$00020018
00020028 38C60001  ADDI        R6,R6,$1
0002002C 38E7FFFF  ADDI        R7,R7,$FFFFFFFF
00020030 7C641B78  OR          R4,R3,R3
00020034 2B070000  CMPLI       CRF6,0,R7,$0
00020038 409AFFE0  BC          4,26,$00020018
0002003C 00000000  WORD        $00000000
PPC1-Bug>

Set breakpoint at $20028.



GD - Go Direct (Ignore Breakpoints)

3-61

3

PPC1-Bug>BR 20028 <Return>
BREAKPOINTS
00020028
PPC1-Bug>

Initialize R7 and start target the program.

PPC1-Bug>RM R7 <Return>
R7     =00000000 ? FFFFFFFF. <Return>
PPC1-Bug>

PPC1-Bug>GD 20000 <Return>
Effective address: 00020000

To exit target code, press the abort switch. Note that the breakpoint 
was not taken.

Exception: System Reset (Soft)
SRR0 =00020020 SRR1 =00003030 Vector-Offset =00100
IP     =00020020 MSR    =00003030 CR     =00000080 FPSCR  =00000000
R0     =00000000 R1     =00020000 R2     =10000001 R3     =00041000
R4     =000410F4 R5     =00051000 R6     =00009A46 R7     =FFFF65B9
R8     =00000000 R9     =00000000 R10    =00000000 R11    =00000000
R12    =00000000 R13    =00000000 R14    =00000000 R15    =00000000
R16    =00000000 R17    =00000000 R18    =00000000 R19    =00000000
R20    =00000000 R21    =00000000 R22    =00000000 R23    =00000000
R24    =00000000 R25    =00000000 R26    =00000000 R27    =00000000
R28    =00000000 R29    =00000000 R30    =00000000 R31    =00000000
SPR0   =00000000 SPR1   =00000000 SPR8   =00000000 SPR9   =00000000
00020020 7F042840  CMPL        CRF6,0,R4,R5
PPC1-Bug>



GEVBOOT - Global Environment Variable Boot

3-62

3

GEVBOOT - Global Environment Variable Boot

Command Input

GEVBOOT Variable-Name

Description

The GEVBOOT command permits the user to boot the system 
using a Global Environment Variable, Variable-Name, which is a 
Òfw-boot-pathÓ.

Background: Residual Data and Boot List

Recent releases of IBM AIX requires that the PRP style of residual 
data be provided by the system firmware. Previous releases of 
IBM's AIX did not require that residual data be implemented.

Residual data, basically, informs the operating system of the system 
attributes (i.e., what devices are present, how are they configured, 
are they bootable?, etc.). To some degree, it is an abstraction of the 
hardware that the system firmware provides.

IBM has further defined what residual data should look like now. 

This latest version of IBM AIX also requires that the system 
firmware must support a boot list. This boot list contains a list of 
bootable devices that the firmware utilizes to boot the system. This 
boot list is housed within a Global Environment Variable (GEV). 
The GEVs are kept in the PRP partition of NVRAM, more 
specifically, the global environment variable area. Through this 
GEV, the OS/user can configure the system for its boot device 
selection policy.

This latest version of IBM AIX also requires that the system 
firmware support the PRP style of network booting. The PRP style 
of network boot treats the network boot image the same as a mass 
storage (e.g., hard disk, floppy) boot image. The network boot 
feature facilitates AIX network install manager (NIM) feature.



GEVBOOT - Global Environment Variable Boot

3-63

3

Requirements

Some high-level requirements that this release meets are:

❏ Residual Data as specified above.

❏ Boot List Support via "fw-boot-path", "fw-boot-device", and 
"boot-file" global environment variables

❏ Network Boot, PRP style

❏ OEM Banner support

❏ Initialization of the PIRQx (PCI Interrupts) route control      
registers.

❏ System uniqueness (i.e., board serial number)

The "boot list" and "OEM banner support" requirements require 
that the firmware be capable of reading and writing global 
environment variables. These variables are housed within the 
global environment area of NVRAM (i.e., the PRP partition).

Each mass storage device, and network interface supported from 
the firmware must identify itself. This identification is per the 
firmware device naming convention, as outlined in the IBM 
document. The device naming convention follows the Open 
Firmware device naming convention. The GE variables, "fw-boot-
path" and "fw-boot-device", consist of device names.

Global Environment Variables (GEVs)

The product supports the following GEVs:

❏ MOT-OEM-BANNER
This variable is used by the firmware to display the OEM 
banner (if initialized). The contents of this GEV are displayed 
prior to the display of the firmware copyright message.

❏ MOT-OEM-ID
This variable is used by the firmware to apply any special 
switches/product-variations/work-arounds as needed.



GEVBOOT - Global Environment Variable Boot

3-64

3

❏ fw-boot-path
This variable contains a list (four maximum) of boot devices 
which can be booted from. The OS maintains this variable. 
This is a read-only variable from the firmware's perspective. 
(The firmware does not impose any limit upon the length of 
this list.) However, this variable may be modified by utilizing 
the GEVEDIT command.

❏ fw-boot-device
This variable contains the boot device path from the current 
boot device (i.e., the device just booted from, mass storage or 
network). This variable is updated on each successful boot 
(i.e., IPL loaded).

❏ ClientIPAddr
This variable is updated on each successful network boot. It 
contains the client's internet protocol address.

❏ ServerIPAddr
This variable is updated on each successful network boot. It 
contains the server's internet protocol address.

❏ GatewayIPAddr
This variable is updated on each successful network boot.It 
contains the gateway internet protocol address to the server.

❏ NetMask
This variable is updated on each successful network boot. It 
contains the internet protocol address mask. The mask is 
applied to both the server's and client's IP address to 
determine if the gateway must be used.

❏ boot-file
This variable is updated on each successful network boot. It 
contains the name of the boot file.



GEVBOOT - Global Environment Variable Boot

3-65

3

Styles of Booting

The older Motorola mode of mass storage device booting was also 
preserved for backward compatibility. However, priority is given 
to the new style of booting (i.e., NVRAM boot list).

The older product supports booting from the network. However, it 
does not support it as per the PRP specification. The PRP 
specification specifies the boot image from a mass storage device to 
be the same when booting from a network interface. The older 
support treats the network boot image as a raw binary, no format 
understood. The new support understands the PRP boot image. 
The PRP boot image does have a defined format. The network boot 
image may be loaded any where in memory, as per the PRP 
specification.

Support has been added to the product to enable the PRP style of 
networking booting. The former style is also preserved for 
backward compatibility. However, priority is given to the new style 
of network booting. This enablement is in the form of a new ENV 
parameter.

Both styles of network booting are supported. The new style of 
networking booting (i.e., PRP) is controlled by an ENV 
configuration parameter. The default state of the ENV 
configuration parameter is set to enable the PRP style of network 
booting. Disabling this parameter will effectively default the 
network boot process to the past mode of network booting (i.e., no 
file format understood). This support is identified by the following 
ENV parameter:

Network PReP-Boot Mode Enable [Y/N], defaults to 'Y'

PPC1Bug revision 1.8 added a new global environment variable 
(GEV) "fw-boot-path" boot to the global firmware boot process. The 
boot priority, for both mass storage device boot and network 
interface boot, is given first to the "fw-boot-path" GEV. 

To support this, a new boot process has been added. This boot 
process is labeled "NVRAM Boot List" boot.This new boot process 
is identified by the ENV command parameters of:



GEVBOOT - Global Environment Variable Boot

3-66

3

NVRAM Boot List (GEV.fw-boot-path) Boot Enable [Y/N], defaults to 'Y' 
NVRAM Boot List (GEV.fw-boot-path) Boot at power-up only [Y/N], defaults to 'N' 
NVRAM Boot List (GEV.fw-boot-path) Boot Abort Delay, defaults to 5

The default state of the ENV configuration parameter is set to 'Y' for 
yes/enabled. This gives boot priority to the devices listed within 
the "fw-boot-path" GEV. Setting this ENV configuration parameter 
to 'N' for no/disabled, effectively changes the behavior of boot 
policy to the same behavior as prior products. If the "fw-boot-path" 
GEV is not initialized, this also effectively has the same behavior as 
prior products.

This new boot takes priority over all other boots (i.e., Auto Boot, 
Network Boot). This boot may also be executed manually from the 
firmware command line via the GEVBOOT command.

The following global environment variables are updated upon each 
successful network boot: fw-boot-device, ClientIPAddr, 
ServerIPAddr, GatewayIPAddr, NetMask, and boot-file.

The "fw-boot-device" GEV is updated upon each boot instance. This 
is done regardless of the specified boot policy. Both the mass 
storage device boot module, and the network interface boot module 
are modified to set the GEV at every successful boot instance.

The "fw-boot-path" GEV is a list (a maximum of four) of "fw-boot-
device" GEVs. Boot priority is always given to the first device in the 
list.

Example

Show storage devices via ioi

PPC1-Bug>ioi;d
I/O Inquiry Status:
CLUN DLUN CNTRL-TYPE DADDR DTYPE RM Inquiry-Data
 1 0 PC8477 0 $00 Y <None>
Device-Name =/pci@80000000/pci8086,484@b,0/PNP0700@3f0/floppy@0



GEVBOOT - Global Environment Variable Boot

3-67

3

fw-boot-path needs to be defined as a device that was shown to be available 
via ioi

PPC1-Bug>gevshow
fw-boot-device=/pci@80000000/pci1011,9@e,0:0,0
ClientIPAddr=144.191.24.121
ServerIPAddr=144.191.24.252
GatewayIPAddr=144.191.12.252
NetMask=255.255.255.0
boot-file=/usr/tmp/jdcham.ram
fw-boot-path=/pci@80000000/pci8086,484@b,0/PNP0700@3f0/floppy@0
Total Number of GE Variables =7, Bytes Utilized =313, Bytes Free =1999

gevboot automatically uses fw-boot-device -- in this example it fails 
because there is no floppy in the drive with a bootable image

PPC1-Bug>gevboot

NVRAM Boot List about to Begin... Press <ESC> to Bypass, <SPC> to Continue
Scanning System for Attached Boot Devices
/pci@80000000/pci8086,484@b,0/PNP0700@3f0/floppy@0
/pci@80000000/pci1011,9@e,0:0,0

Attempting BOOT from Devices Specified by the GE Variable “fw-boot-path”
/pci@80000000/pci8086,484@b,0/PNP0700@3f0/floppy@0
PPC1-Bug>



GEVDEL - Global Environment Variable Delete

3-68

3

GEVDEL - Global Environment Variable Delete

Command Input

GEVDEL Variable-Name

Description

The GEVDEL command permits the user to selectively delete a 
Global Environment Variable, Variable-Name.

Example

PPC1-Bug>gevdel testvar
testvar=12345

Update Global Environment Area of NVRAM (Y/N)? y
PPC1-Bug>

Show that the variable is deleted

PPC1-Bug>gevshow
fw-boot-device=/pci@80000000/pci1011,9@e,0:0,0
ClientIPAddr=144.191.24.121
ServerIPAddr=144.191.24.252
GatewayIPAddr=144.191.12.252
NetMask=255.255.255.0
boot-file=/usr/tmp/jdcham.ram
Total Number of GE Variables =6, Bytes Utilized =184, Bytes Free =2128
PPC1-Bug>



GEVDUMP - Global Environment Variable(s) Dump

3-69

3

GEVDUMP - Global Environment Variable(s) Dump

Command Input

GEVDUMP

Description

The GEVDUMP command permits the user to dump to the 
console, in a hexadecimal/ASCII fashion, the contents of NVRAM 
(i.e., the PRP partition). These contents include the NVRAM 
Header + Data.

Example

PPC1-Bug>gevdump

01F8B000  00 04 01 02 07 E8 59 C3  02 00 01 00 00 00 00 00 ......Y.........
01F8B010  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 ................
01F8B020  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 ................
01F8B030  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 ................
01F8B040  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 ................
01F8B050  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 ................
01F8B060  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 ................
01F8B070  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 ................
01F8B080  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 ................
01F8B090  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 ................
01F8B0A0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 ................
01F8B0B0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 ................
01F8B0C0  00 00 00 00 00 00 00 F8  00 00 09 08 00 00 00 00 ................
01F8B0D0  00 00 00 00 00 00 0C 00  00 00 04 00 00 00 00 00 ................
01F8B0E0  00 00 00 00 00 00 00 00  00 00 0A 00 00 00 02 00 ................
01F8B0F0  19 94 01 04 21 27 48 00  66 77 2D 62 6F 6F 74 2D ....!'H.fw-boot-



GEVDUMP - Global Environment Variable(s) Dump

3-70

3

01F8B100  64 65 76 69 63 65 3D 2F  70 63 69 40 38 30 30 30 device=/pci@8000
01F8B110  30 30 30 30 2F 70 63 69  31 30 31 31 2C 39 40 65 0000/pci1011,9@e
01F8B120  2C 30 3A 30 2C 30 00 43  6C 69 65 6E 74 49 50 41 ,0:0,0.ClientIPA
01F8B130  64 64 72 3D 31 34 34 2E  31 39 31 2E 32 34 2E 31 ddr=144.191.24.1
01F8B140  32 31 00 53 65 72 76 65  72 49 50 41 64 64 72 3D 21.ServerIPAddr=
01F8B150  31 34 34 2E 31 39 31 2E  32 34 2E 32 35 32 00 47 144.191.24.252.G
01F8B160  61 74 65 77 61 79 49 50  41 64 64 72 3D 31 34 34 atewayIPAddr=144
01F8B170  2E 31 39 31 2E 31 32 2E  32 35 32 00 4E 65 74 4D .191.12.252.NetM
01F8B180  61 73 6B 3D 32 35 35 2E  32 35 35 2E 32 35 35 2E ask=255.255.255.
01F8B190  30 00 62 6F 6F 74 2D 66  69 6C 65 3D 2F 75 73 72 0.boot-file=/usr
01F8B1A0  2F 74 6D 70 2F 6A 64 63  68 61 6D 2E 72 61 6D 00 /tmp/jdcham.ram.
01F8B1B0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 ................
01F8B1C0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 ................
01F8B1D0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 ................
01F8B1E0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 ................
01F8B1F0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 ................

:

More stuff in between

:

01F8BF00  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 ................
01F8BF10  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 ................
01F8BF20  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 ................
01F8BF30  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 ................
01F8BF40  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 ................
01F8BF50  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 ................
01F8BF60  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 ................
01F8BF70  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 ................
01F8BF80  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 ................
01F8BF90  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 ................
01F8BFA0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 ................
01F8BFB0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 ................
01F8BFC0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 ................
01F8BFD0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 ................
01F8BFE0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 ................
01F8BFF0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 ................

PPC1-Bug>



GEVEDIT - Global Environment Variable Edit

3-71

3

GEVEDIT - Global Environment Variable Edit

Command Input

GEVEDIT Variable-Name

Description

The GEVEDIT command permits the user to selectively edit a 
Global Environment Variable, Variable-Name.

This writing of new, or modification of existing, global 
environment variables, is available from the command line (i.e., on 
demand), or at any time within the product (i.e., a function call).

Example

PPC1-Bug>gevedit testvar
testvar= 12345

Update Global Environment Area of NVRAM (Y/N)? y
PPC1-Bug>

Show the new variable

PPC1-Bug>gevshow
fw-boot-device=/pci@80000000/pci1011,9@e,0:0,0
ClientIPAddr=144.191.24.121
ServerIPAddr=144.191.24.252
GatewayIPAddr=144.191.12.252
NetMask=255.255.255.0
boot-file=/usr/tmp/jdcham.ram
testvar=12345
Total Number of GE Variables =7, Bytes Utilized =196, Bytes Free =2116
PPC1-Bug>



GEVINIT - Global Environment Variable Initialization

3-72

3

GEVINIT - Global Environment Variable Initialization

Command Input

GEVINIT

Description

The GEVINIT command permits the user to initialize the NVRAM 
Header (i.e., the PRP partition) information.

Initialization of the NVRAM PRP partition is available from the 
command line (i.e., on demand), or at any time when the system's 
firmware initializes itself (i.e., buginit()).

The auto initializing of the NVRAM (PRP partition) header, is 
controlled by an ENV configuration parameter. The default state of 
this parameter is set to enabled. The following is the ENV 
parameter syntax:

Auto-Initialize of NVRAM Header Enable [Y/N], defaults to 'Y'

If you answer Y, it will initialize the header; if you answer N, it 
wonÕt.

Examples

GEVINIT example with (yes) for update

PPC1-Bug>gevinit

Update Global Environment Area of NVRAM (Y/N)? y
PPC1-Bug>

GEVINIT example with (no) for update

PPC1-Bug>gevinit

Update Global Environment Area of NVRAM (Y/N)? n
PPC1-Bug>



GEVSHOW - Global Environment Variable(s) Display

3-73

3

GEVSHOW - Global Environment Variable(s) Display

Command Input

GEVSHOW [string]

Description

The GEVSHOW command permits the user to selectively display 
the contents of a currently configured global environment variable 
(by typing string, where string is the name of a variable), or to 
display all currently configured global environment variables.

Reading of global environment variables (GEV read) is available 
from the command line (i.e., on demand), or at any time within the 
product (i.e., a function call).

Example

PPC1-Bug>gevshow
fw-boot-device=/pci@80000000/pci1011,9@e,0:0,0
ClientIPAddr=144.191.24.121
ServerIPAddr=144.191.24.252
GatewayIPAddr=144.191.12.252
NetMask=255.255.255.0
boot-file=/usr/tmp/jdcham.ram
Total Number of GE Variables =6, Bytes Utilized =184, Bytes Free =2128
PPC1-Bug>



GN - Go to Next Instruction

3-74

3

GN - Go to Next Instruction

Command Input

GN

Command Input

The GN command sets a temporary breakpoint at the address of the 
next instruction (the instruction that follows the current 
instruction), and starts target code execution. After setting the 
temporary breakpoint, the sequence of events is similar to that of 
the GO command.

GN is especially helpful when debugging modular code because it 
allows you to trace through a subroutine call as if it were a single 
instruction.

Example

The following section of code resides at address $20000.

PPC1-Bug>DS 20000:6 <Return>
00020000 3C600004  ADDIS       R3,R0,$4
00020004 60631000  ORI         R3,R3,$1000
00020008 3C800000  ADDIS       R4,R0,$0
0002000C 608400FE  ORI         R4,R4,$FE
00020010 4800FFF1  BL          $00030000
00020014 80620000  LWZ         R3,$0(R2) ($FFF0178C)
PPC1-Bug>

The following simple routine resides at address $30000.

PPC1-Bug>DS 30000 <Return>
00030000 3CA00000  ADDIS       R5,R0,$0
00030004 2B040000  CMPLI       CRF6,0,R4,$0
00030008 419A0014  BC          12,26,$0003001C
0003000C 98A30000  STB         R5,$0(R3) ($00000000)
00030010 3884FFFF  ADDI        R4,R4,$FFFFFFFF
00030014 38630001  ADDI        R3,R3,$1
00030018 4BFFFFEC  B           $00030004
0003001C 4E800020  BCLR        20,0
PPC1-Bug>



GN - Go to Next Instruction

3-75

3

Execute up to the BL instruction.

PPC1-Bug>RM IP <Return>
IP     =00020020 ? 20000. <Return>
PPC1-Bug>

PPC1-Bug>GT 20010 <Return>
Effective address: 00020010
Effective address: 00020000
At Breakpoint
IP     =00020010 MSR    =00003030 CR     =00000020 FPSCR  =00000000
R0     =00000000 R1     =00020000 R2     =FFF0178C R3     =00041000
R4     =000000FE R5     =00000000 R6     =00000000 R7     =00000000
R8     =00000000 R9     =00000000 R10    =00000000 R11    =00000000
R12    =00000000 R13    =00000000 R14    =00000000 R15    =00000000
R16    =00000000 R17    =00000000 R18    =00000000 R19    =00000000
R20    =00000000 R21    =00000000 R22    =00000000 R23    =00000000
R24    =00000000 R25    =00000000 R26    =00000000 R27    =00000000
R28    =00000000 R29    =00000000 R30    =00000000 R31    =00000000
SPR0   =00000000 SPR1   =00000000 SPR8   =00020014 SPR9   =00000000
00020010 4800FFF1  BL          $00030000
PPC1-Bug>

Use the GN command to trace through the subroutine call and 
display the results.

PPC1-Bug>GN <Return>
Effective address: 00020014
Effective address: 00020010
At Breakpoint
IP     =00020014 MSR    =00003030 CR     =00000020 FPSCR  =00000000
R0     =00000000 R1     =00020000 R2     =FFF0178C R3     =000410FE
R4     =00000000 R5     =00000000 R6     =00000000 R7     =00000000
R8     =00000000 R9     =00000000 R10    =00000000 R11    =00000000
R12    =00000000 R13    =00000000 R14    =00000000 R15    =00000000
R16    =00000000 R17    =00000000 R18    =00000000 R19    =00000000
R20    =00000000 R21    =00000000 R22    =00000000 R23    =00000000
R24    =00000000 R25    =00000000 R26    =00000000 R27    =00000000
R28    =00000000 R29    =00000000 R30    =00000000 R31    =00000000
SPR0   =00000000 SPR1   =00000000 SPR8   =00020014 SPR9   =00000000
00020014 80620000  LWZ         R3,$0(R2) ($FFF0178C)
PPC1-Bug>



GO - Go Execute User Program

3-76

3

GO - Go Execute User Program

Command Input

GO [ADDR]

Description

The GO command initiates target code execution. All previously 
set breakpoints are enabled. If an address is specified, it is placed in 
the target IP. Execution starts at the target IP address. The sequence 
of events is as follows:

1. If an address is specified, it is loaded in the target IP.

2. If a breakpoint is set at the target IP address, the instruction 
at the target IP is traced (executed in trace mode).

3. All breakpoints are inserted in the target code.

4. Target code execution resumes at the target IP address.

At this point control may be returned to the debugger by one of the 
following conditions:

❏ A breakpoint with a count of 0 was found.

❏ The abort or reset switch on the debugger host was pressed.

❏ An unexpected exception occurred.

When you invoke GO, control may or may not return to the 
debugger, depending on the outcome of the user program.

You may use G as an alternate form to GO.

Example

The following program resides at $30000.



GO - Go Execute User Program

3-77

3

PPC1-Bug>DS 30000 <Return>
00030000 3CA00000  ADDIS       R5,R0,$0
00030004 2B040000  CMPLI       CRF6,0,R4,$0
00030008 419A0014  BC          12,26,$0003001C
0003000C 98A30000  STB         R5,$0(R3) ($000410FE)
00030010 3884FFFF  ADDI        R4,R4,$FFFFFFFF
00030014 38630001  ADDI        R3,R3,$1
00030018 4BFFFFEC  B           $00030004
0003001C 4E800020  BCLR        20,0
PPC1-Bug>

Initialize R3/R4, set some breakpoints, and start the target 
program.

PPC1-Bug>RM R3 <Return>
R3     =000410FE? 68000 <Return>
R4     =00000000? 34. <Return>
PPC1-Bug>

PPC1-Bug>BR 30018 3001C <Return>
BREAKPOINTS
00030018               0003001C
PPC1-Bug>

PPC1-Bug>GO 30000 <Return>
Effective address: 00030000
At Breakpoint
IP     =00030018 MSR    =00003030 CR     =00000040 FPSCR  =00000000
R0     =00000000 R1     =00020000 R2     =FFF0178C R3     =00068001
R4     =00000033 R5     =00000000 R6     =00000000 R7     =00000000
R8     =00000000 R9     =00000000 R10    =00000000 R11    =00000000
R12    =00000000 R13    =00000000 R14    =00000000 R15    =00000000
R16    =00000000 R17    =00000000 R18    =00000000 R19    =00000000
R20    =00000000 R21    =00000000 R22    =00000000 R23    =00000000
R24    =00000000 R25    =00000000 R26    =00000000 R27    =00000000
R28    =00000000 R29    =00000000 R30    =00000000 R31    =00000000
SPR0   =00000000 SPR1   =00000000 SPR8   =00020014 SPR9   =00000000
00030018 4BFFFFEC  B           $00030004
PPC1-Bug>

Remove breakpoint at this location (* represents the current 
instruction pointer).

PPC1-Bug>NOBR * <Return>
BREAKPOINTS
0003001C
PPC1-Bug>



GO - Go Execute User Program

3-78

3

Continue target program execution.

PPC1-Bug>G <Return>
Effective address: 00030018
At Breakpoint
IP     =0003001C MSR    =00003030 CR     =00000020 FPSCR  =00000000
R0     =00000000 R1     =00020000 R2     =FFF0178C R3     =00068034
R4     =00000000 R5     =00000000 R6     =00000000 R7     =00000000
R8     =00000000 R9     =00000000 R10    =00000000 R11    =00000000
R12    =00000000 R13    =00000000 R14    =00000000 R15    =00000000
R16    =00000000 R17    =00000000 R18    =00000000 R19    =00000000
R20    =00000000 R21    =00000000 R22    =00000000 R23    =00000000
R24    =00000000 R25    =00000000 R26    =00000000 R27    =00000000
R28    =00000000 R29    =00000000 R30    =00000000 R31    =00000000
SPR0   =00000000 SPR1   =00000000 SPR8   =00020014 SPR9   =00000000
0003001C 4E800020  BCLR        20,0
PPC1-Bug>

Remove breakpoints and restart the target code.

PPC1-Bug>NOBR <Return>
BREAKPOINTS
PPC1-Bug>

PPC1-Bug>GO 30000 <Return>
Effective address: 00030000

The outcome is dependent on the loaded application.



GT - Go to Temporary Breakpoint

3-79

3

GT - Go to Temporary Breakpoint

Command Input

GT ADDR

Command Input

The GT command sets a temporary breakpoint and starts target 
code execution. A count may be specified with the temporary 
breakpoint. Control is given at the target IP address. All previously 
set breakpoints are enabled. The temporary breakpoint is removed 
when any breakpoint with a count of 0 is encountered.

After setting the temporary breakpoint, the sequence of events is 
similar to that of the GO command. At this point control may be 
returned to the debugger by one of the following conditions:

❏ A breakpoint with a count of 0 was found.

❏ The abort or reset switch on the debugger host was pressed.

❏ An unexpected exception occurred.

Example

The following program resides at $20000 and $30000.

PPC1-Bug>DS 20000:7 <Return>
00020000 3C600004  ADDIS       R3,R0,$4
00020004 60631000  ORI         R3,R3,$1000
00020008 3C800000  ADDIS       R4,R0,$0
0002000C 608400FE  ORI         R4,R4,$FE
00020010 4800FFF1  BL          $00030000
00020014 80620000  LWZ         R3,$0(R2) ($FFF0178C)
00020018 4BFFFFE8  B           $00020000
PPC1-Bug>



GT - Go to Temporary Breakpoint

3-80

3

PPC1-Bug>DS 30000:8 <Return>
00030000 3CA00000  ADDIS       R5,R0,$0
00030004 2B040000  CMPLI       CRF6,0,R4,$0
00030008 419A0014  BC          12,26,$0003001C
0003000C 98A30000  STB         R5,$0(R3) ($00041004)
00030010 3884FFFF  ADDI        R4,R4,$FFFFFFFF
00030014 38630001  ADDI        R3,R3,$1
00030018 4BFFFFEC  B           $00030004
0003001C 4E800020  BCLR        20,0
PPC1-Bug>

Set a breakpoint.

PPC1-Bug>BR 20014 <Return>
BREAKPOINTS
00020014
PPC1-Bug>

Set IP to start of program, set temporary breakpoint, and start target 
code.

PPC1-Bug>RM IP <Return>
IP   =00020010 ? 20000. <Return>
PPC1-Bug>

PPC1-Bug>GT 20010 <Return>
Effective address: 00020010
Effective address: 00020000
At Breakpoint
IP     =00020010 MSR    =00003030 CR     =00000040 FPSCR  =00000000
R0     =00000000 R1     =00020000 R2     =FFF0178C R3     =00041000
R4     =000000FE R5     =00000000 R6     =00000000 R7     =00000000
R8     =00000000 R9     =00000000 R10    =00000000 R11    =00000000
R12    =00000000 R13    =00000000 R14    =00000000 R15    =00000000
R16    =00000000 R17    =00000000 R18    =00000000 R19    =00000000
R20    =00000000 R21    =00000000 R22    =00000000 R23    =00000000
R24    =00000000 R25    =00000000 R26    =00000000 R27    =00000000
R28    =00000000 R29    =00000000 R30    =00000000 R31    =00000000
SPR0   =00000000 SPR1   =00000000 SPR8   =00020014 SPR9   =00000000
00020010 4800FFF1  BL          $00030000
PPC1-Bug>



GT - Go to Temporary Breakpoint

3-81

3

Set another temporary breakpoint at $20000 and continue the target 
program execution.

PPC1-Bug>GT 20000 <Return>
Effective address: 00020000
Effective address: 00020010
At Breakpoint
IP     =00020014 MSR    =00003030 CR     =00000020 FPSCR  =00000000
R0     =00000000 R1     =00020000 R2     =FFF0178C R3     =000410FE
R4     =00000000 R5     =00000000 R6     =00000000 R7     =00000000
R8     =00000000 R9     =00000000 R10    =00000000 R11    =00000000
R12    =00000000 R13    =00000000 R14    =00000000 R15    =00000000
R16    =00000000 R17    =00000000 R18    =00000000 R19    =00000000
R20    =00000000 R21    =00000000 R22    =00000000 R23    =00000000
R24    =00000000 R25    =00000000 R26    =00000000 R27    =00000000
R28    =00000000 R29    =00000000 R30    =00000000 R31    =00000000
SPR0   =00000000 SPR1   =00000000 SPR8   =00020014 SPR9   =00000000
00020014 80620000  LWZ         R3,$0(R2) ($FFF0178C)
PPC1-Bug>

Note that a breakpoint from the breakpoint table was encountered 
before the temporary breakpoint.



HE - Help

3-82

3

HE - Help

Command Input

HE [COMMAND]

Description

The HE command displays information about the debugger 
commands.

HE displays the description and the syntax of the command 
specified in the COMMAND argument.

Without the COMMAND argument, HE displays a list of the 
debugger commands and their descriptions.

Examples

Example 1:

PPC1-Bug>HE MD <Return>
Memory Display:
MD[S] <ADDR>[:<COUNT>|<DEL><ADDR>][;[B|H|W|S|D][DI]]
PPC1-Bug>

Example 2:

PPC1-Bug>HE <Return>
AS       Assembler
BC       Block of Memory Compare
BF       Block of Memory Fill
BI       Block of Memory Initialize
BM       Block of Memory Move
BR       Breakpoint Insert
BS       Block of Memory Search
BV       Block of Memory Verify
CM       Concurrent Mode
CNFG     Configure Board Information Block
CS       Checksum a Block of Data
CSAR     PCI Configuration Space READ Access
CSAW     PCI Configuration Space WRITE Access
DC       Data Conversion and Expression Evaluation
DMA      Move Block of Memory
DS       Disassembler
DU       Dump S-Records



HE - Help

3-83

3

ECHO     Echo String
ENV      Set Environment to Bug/Operating System
FORK     Fork Idle MPU at Address
FORKWR   Fork Idle MPU with Registers
G        "Alias" for "GO" Command
GD       Go Direct (Ignore Breakpoints)
GEVBOOT  Global Environment Variable Boot
GEVDEL   Global Environment Variable Delete
GEVDUMP  Global Environment Variable(s) Dump
Press "RETURN" to continue
GEVEDIT Global Environment Variable Edit
GEVINIT Global Environment Variable Initialization
GEVSHOW Global Environment Variable(s) Display
GN       Go to Next Instruction
GO       Go Execute User Program
GT       Go to Temporary Breakpoint
HE       Help on Command(s)
IDLE     Idle Master MPU
IOC      I/O Control for Disk
IOI      I/O Inquiry
IOP      I/O Physical to Disk
IOT      I/O "Teach" for Configuring Disk Controller
IRD      Idle MPU Register Display
IRM      Idle MPU Register Modify
IRS      Idle MPU Register Set
LO       Load S-Records from Host
M        "Alias" for "MM" Command
MA       Macro Define/Display
MAE      Macro Edit
MAL      Enable Macro Expansion Listing
MAR      Macro Load
MAW      Macro Save
MD       Memory Display
MDS      Memory Display
MENU     System Menu
MM       Memory Modify
Press "RETURN" to continue
MMD      Memory Map Diagnostic
MS       Memory Set
MW       Memory Write
NAB      Network Automatic Bootstrap Operating System
NAP      Nap MPU
NBH      Network Bootstrap Operating System and Halt
NBO      Network Bootstrap Operating System
NIOC     Network I/O Control



HE - Help

3-84

3

NIOP     Network I/O Physical
NIOT     I/O "Teach" for Configuring Network Controller
NOBR     Breakpoint Delete
NOCM     No Concurrent Mode
NOMA     Macro Delete
NOMAL    Disable Macro Expansion Listing
NOPA     Printer Detach
NOPF     Port Detach
NORB     No ROM Boot
NOSYM    Detach Symbol Table
NPING    Network Ping
OF       Offset Registers Display/Modify
PA       Printer Attach
PBOOT    Bootstrap Operating System
PF       Port Format
Press "RETURN" to continue
PFLASH   Program FLASH Memory
PS       Put RTC Into Power Save Mode for Storage
RB       ROM Bootstrap Operating System
RD       Register Display
REMOTE   Connect the Remote Modem to CSO
RESET    Cold/Warm Reset
RL       Read Loop
RM       Register Modify
RS       Register Set
RUN      MPU Execution/Status
SD       Switch Directories
SET      Set Time and Date
SROM     SROM Examine/Modify
SYM      Attach Symbol Table
SYMS     Display Symbol Table
T        Trace
TA       Terminal Attach
TIME     Display Time and Date
TM       Transparent Mode
TT       Trace to Temporary Breakpoint
VE       Verify S-Records Against Memory
VER      Revision/Version Display
WL       Write Loop
PPC1-Bug>



HE - Help

3-85

3



3

IDLE - Idle Master MPU

3-86

3Debugger Commands

IDLE - Idle Master MPU

Note This command is for multi-processor boards only.

Command Input

IDLE

Description

The IDLE command allows you to idle the current processor. Care 
should be taken not to idle it when all other processors are idle. The 
only way to correct this problem is by an MPU reset.

To inquire of the BUG about idle processors, refer to the RUN 
command.

Example

Idle current processor.

PPC1-Bug>idle
PPC1-Bug>



IOC - I/O Control for Disk

3-87

3

IOC - I/O Control for Disk

Command Input

IOC

Description

The IOC command sends command packets directly to a disk 
controller. The packet to be sent must already reside in memory 
and must follow the packet protocol of the particular disk 
controller. This packet protocol is outlined in the documentation for 
the SCSI controller (refer to Appendix A, Related Documentation).

This command may be used as a debugging tool to issue commands 
to the disk controller to locate problems with either drives, media, 
or the controller itself. 

When invoked, this command prompts for the controller and drive 
required. The default controller LUN (CLUN) and device LUN 
(DLUN) when IOC is invoked are those most recently specified for 
IOP, IOT, or a previous invocation of IOC. The command also 
prompts for an address where the controller command is located. 
You may change the displayed value by typing a new value, 
followed by the Return key. To leave the field unaltered, press the 
Return key without typing a new value.



IOC - I/O Control for Disk

3-88

3

You may also enter a special character, either at the prompt or after 
typing new data, for scrolling through the fields. The special 
characters are:

The power-up default for the packet address is the area which is 
also used by the PBOOT and IOP commands for building packets. 
IOC displays the command packet, and if you so instruct it, sends 
the packet to the disk controller, following the proper protocol 
required by the particular controller. 

A device probe with entry into the device descriptor table is done 
whenever a specified device is accessed via IOC.

The device probe mechanism utilizes the SCSI commands Inquiry 
and Mode Sense. If the specified controller is non-SCSI, the probe 
simply returns a status of device present and unknown . The 
device probe makes an entry into the device descriptor table with 
the pertinent data. After an entry has been made, the next time a 
probe is done it simply returns with device present  status 
(pointer to the device descriptor).

V or v Go to the next Þeld. This is the default, and remains 
in effect until changed by entering one of the other 
special characters.

^ Back up to the previous Þeld. This remains in effect 
until changed by entering one of the other special 
characters.

= Re-open the same Þeld

. Terminate the IOC command, and return control to 
the debugger



IOC - I/O Control for Disk

3-89

3

Example

Send the packet at $10000 to a controller device configured as 
CLUN #0. Specify an operation to the hard disk which is at DLUN 
#1. 

PPC1-Bug>IOC <Return> 
Controller LUN  =00? <Return> 
Device LUN      =00? 1 <Return> 
Packet address  =000012BC? 10000 <Return> 
00700074  0000 0000 8004 000E  0000 0000 0000 0000  ................
00700084  0000 0006 1200 0000  2400 0000 0000 0000  ........$.......
00700094  0000 0000 0000 0000  0000 0000 0000 0000  ................
007000A4  0000 0000 0000 0000  0000 0000 0000 0000  ................
007000B4  0000 0000 0000 0000  0000 0024 0040 0000  ...........$.@..
007000C4  0000 0000 0000 0000  0000 0000 0018 AFC8  ................
007000D4  0000 0000 0000 0000  0000 0000 0000 0000  ................
007000E4  0000 0000 0000 0000  0000 0000 0000 0000  ................
Send Packet=Y (Y/N)? y
PPC1-Bug>



IOI - I/O Inquiry

3-90

3

IOI - I/O Inquiry

Command Input

IOI [;[C|D|L|N]]

Options

Description

The IOI command inquires for all of the possible attached devices. 
If no option is specified, this command probes the system for all 
possible CLUN/DLUN combinations. Both the CLUN and DLUN 
parameters have the range of 0 to 255 (decimal).

If the probed device supports an inquiry operation (SCSI devices), 
the command will display the inquiry data along with the CLUN, 
DLUN, controller type, device address, device type, and the 
removable media attribute. If a device does not support inquiry 
data, the message <None> will be displayed.

The probe ordering starts with a CLUN of zero and a DLUN of zero. 
Once the probe is done, the DLUN is incremented by one and the 
probe is executed again, the incrementing of the DLUN and the 
probing continues until the DLUN reaches 256. At this point the 
CLUN is incremented by one and the DLUN is set to zero, the 
probing of DLUNs from zero to 255 is performed. The probing 
continues until the CLUN reaches 256.

When the ENV option ÒSerial Startup Code Master EnableÓ is set to 
ÔYÕ, the CLUN/DLUN numbers are displayed on the console as the 
probe occurs.

The CLUN/DLUN numbers in this case are shown on the screen as:

[mmnn]

C Clear the Device Descriptor Table. 

D List Devices while probing

L List the Device Descriptor Table. 

N List the Devices currently conÞgured



IOI - I/O Inquiry

3-91

3

where: mm = the CLUN number and

while: nn = the DLUN number

The CLUN/DLUN numbers are always sent to the 7-segment LEDs 
regardless of the ENV setting.

With the variable number of devices that can now be attached to a 
given system, the memory requirements to house the pertinent 
device descriptors cannot be met. The debugger reserves space for 
16 device descriptors. The device descriptor table (16 entries) can be 
viewed or cleared by this command with the L and C options, 
respectively.

Each mass storage boot device and network interface boot device is 
identified by a device name. Each device type that the product 
supports is contained/listed within device probe tables. These 
tables are modified to contain the associative device name.

At probe time, the probed device's name is copied into the dynamic 
device configuration tables housed within NVRAM. This will only 
be done, of course, if the device is present. The user may view the 
system's device names by performing the following operations.

For mass storage devices while probing, the D option allows users 
to display the device names of the attached devices. These device 
names are per the IBM firmware and the IBM AIX naming 
conventions.

To view the device names of mass storage devices which are 
currently configured (or have been accessed via a boot (PBOOT), or 
via an I/O operation (IOP)), use the N option.

Examples

Example 1: Probe for all possible devices. As a device is found 
(probe was successful) it is displayed to the console with the 
associative inquiry data.



IOI - I/O Inquiry

3-92

3

PPC1-Bug>IOI <Return>
I/O Inquiry Status:
CLUN  DLUN  CNTRL-TYPE  DADDR  DTYPE  RM  Inquiry-Data
   0  0     NCR53C825   0      $00    N   SEAGATE ST31200N         8630
   0  30    NCR53C825   3      $05    Y   TOSHIBA CD-ROM XM-3401TA 1094
   1  0     PC8477      0      $00    Y   <None>
PPC1-Bug>

Note that if the board has a secondary SCSI, and both primary and 
secondary SCSI controllers are connected with the same SCSI cable, 
all SCSI peripherals will be listed twice by IOI because they can be 
accessed by either primary or secondary SCSI controller:

PPC1-Bug>IOI <Return>
I/O Inquiry Status:
CLUN  DLUN  CNTRL-TYPE  DADDR  DTYPE  RM  Inquiry-Data
   0  10    NCR53C825   1      $00    N   SEAGATE ST11200N ST31230 0660
   0  30    NCR53C825   3      $05    Y   TOSHIBA CD-ROM XM-5301TA 0925
   1  0     PC8477      0      $00    Y   <None>
  12  10    NCR53C825   1      $00    N   SEAGATE ST11200N ST31230 0660
  12  30    NCR53C825   3      $05    Y   TOSHIBA CD-ROM XM-5301TA 0925
PPC1-Bug>

Example 2: List (view) the current device descriptors as found in 
the device descriptor table.

PPC1-Bug>IOI;L <Return>

I/O Inquiry Device Descriptor Table Status:
CLUN  DLUN  CNTRL-TYPE  CNTRL-Address   RM      Device-Type
0     30    VME???      $FFF47000       N       $00/Direct-Access
2     30    VME327      $FFFFA600       Y       $01/Sequential-Access
PPC1-Bug>

Example 3: Clear the device descriptor table.

PPC1-Bug>IOI;C <Return>
PPC1-Bug> 

This option is useful in the event the table becomes full and a device 
that has not been accessed is accessed. 



IOP - I/O Physical (Direct Disk Access)

3-93

3

IOP - I/O Physical (Direct Disk Access)

Command Input

IOP 

Description

The IOP command allows you to read, write, or format any of the 
supported disk or tape devices. 

When invoked, this command goes into an interactive mode, 
prompting you for all the parameters necessary to carry out the 
command. You may change the displayed value by typing a new 
value, followed by the Return key. To leave the field unchanged, 
press the Return key without typing a new value.

You may also enter a special character, either at the prompt or after 
typing new data, for scrolling through the fields. The special 
characters are:

The disk SYSCALL functions (trap routines) are used by IOP to 
access the specified disk or tape (refer to Chapter 5).

A device probe with entry into the device descriptor table is done 
whenever a specified device is accessed via IOP.

The device probe mechanism utilizes the SCSI Inquiry and Mode 
Sense commands (SCSI devices) or ATA Identify Data and Initialize 
Device Parameters commands (ATA devices). ATAPI devices are 
queried only for their inquiry data. If the specified controller is non-
SCSI or non-ATA/ATAPI, the probe simply returns the message 
device present and unknown . The device probe makes an 

V or v Open the next Þeld. This is the default, and remains in 
effect until changed by entering one of the other special 
characters.

^ Back up and open the previous Þeld

= Re-open the same Þeld

. Terminate the IOP command, and return control to the 
debugger



IOP - I/O Physical (Direct Disk Access)

3-94

3

entry into the device descriptor table with the pertinent data. After 
an entry has been made, the next time a probe is done it simply 
returns with the message device present  (pointer to the device 
descriptor). 

Initially (after a cold reset), all the parameters used by IOP are set 
to certain default values. However, any new values entered are 
saved and are displayed the next time that the IOP command is 
invoked. 

The following prompts appear (some prompts are device-
dependent):

Controller LUN =00?

The Logical Unit Number (LUN) of the controller to access

Device LUN =00?

The LUN of the device to access

Read/Write/Format =R?

The command function:

R Read blocks of data from the selected device into memory 

W Writes blocks of data from memory to the selected device 

F Formats the selected device;

!
Caution

If you start the IOP format procedure, it must be allowed 
to complete (PPC1Bug> prompt returns) or else the disk 
drive may be totally disabled. This format procedure 
may take as long as half an hour.

For disk devices, either a track or the whole disk can be selected by 
a subsequent Þeld. This option only applies to SCSI Direct Access 
devices (type $00). When the format operation is selected, the Flag 

Byte  prompt is displayed. A flag byte of $08 specifies to ignore the 
grown defect list when formatting. A ßag byte of $00 speciÞes not 
to ignore the grown defect list when formatting. 



IOP - I/O Physical (Direct Disk Access)

3-95

3

Memory Address =00003000?

The starting address for the memory block to be accessed. For 
disk read operations, data is written starting at this location. For 
disk write operations, data is read starting at this location. 

Starting Block =00000000?

The starting disk block number to access. For disk read 
operations, data is read starting at this block. For disk write 
operations, data is written starting at this block. For disk track 
format operations, the track that contains this block is 
formatted. 

Number of Blocks =0002?

The number of data blocks to be transferred on a read or write 
operation. 

Address Modifier =00?

Note Changing this Address Modifier parameter works for 
the MVME160x series modules only.

Track/Disk =T (T/D)?

File Number =0000?

The starting Þle number to access (for streaming tape devices)

T Format a disk track

D Format the entire disk



IOP - I/O Physical (Direct Disk Access)

3-96

3

Flag Byte =00?

The ßag byte is used to specify variations of the same command, 
and to receive special status information. Bits 0 through 3 are 
used as command bits; bits 4 through 7 are used as status bits. 
The following bits are deÞned for streaming tape read and write 
operations. 

Retension/Erase   =R (R/E)?

After all the required parameters are entered, the disk access is 
initiated. If an error occurs, an error status word is displayed. Refer 
to Appendix F for an explanation of any error status codes that are 
returned.

Bit 7 Filemark ßag. If 1, a Þlemark was detected at the end of 
the last operation. 

Bit 3 Disk formatting. It is ignored on tape operations. 

Bit 2 Reset Controller Flag. If 1, a controller reset will take 
place if possible before the requested operation takes 
place. 

Bit 1 Ignore File Number (IFN) ßag. If 0, the Þle number Þeld 
is used to position the tape before any reads or writes are 
done. If 1, the Þle number Þeld is ignored, and reads or 
writes start at the present tape position.

Bit 0 End of File ßag. If 0, reads or writes are done until the 
speciÞed block count is exhausted. If 1, reads are done 
until the count is exhausted or until a Þlemark is found. 
If 1, writes are terminated with a Þlemark. 

R Retension tape when a format operation is scheduled
E Erase and retension tape when a format operation is 

scheduled



IOP - I/O Physical (Direct Disk Access)

3-97

3

Examples

Example 1: Read 25 blocks starting at block 370 from device 2 of 
controller 0 into memory beginning at address $50000.

PPC1-Bug>IOP <Return>
Controller LUN   =00? <Return>
Device LUN       =00? 2 <Return>
Read/Write/Format=R? <Return>
Memory  Address  =00003000? 50000 <Return>
Starting Block   =00000000? &370 <Return>
Number of Blocks =0002? &25 <Return>
Address Modifier =00? <Return>
PPC1-Bug>

Example 2: Write 14 blocks starting at memory location $7000 to file 
6 of device 0, controller 4. Append a filemark at the end of the file.

PPC1-Bug>IOP <Return>
Controller LUN   =00? 4 <Return>
Device LUN       =02? 0 <Return>
Read/Write/Format=R? W <Return>
Memory  Address  =00050000? 7000 <Return>
File Number      =00000172? 6 <Return>
Number of Blocks =0019? E <Return>
Flag Byte        =00? %01 <Return>
Address Modifier =00? <Return>
PPC1-Bug>

Example 3: Format the specified device with the option not to 
ignore the grown defect list. 

PPC1-Bug>IOP
Controller LUN    =00?  <Return>
Device LUN        =00?  <Return>
Read/Write/Format =R? F <Return>
Starting Block    =00000000?  <Return>
Track/Disk (T/D)  =D?  <Return>
Flag Byte         =00?  <Return>
Address Modifier  =00?  <Return>
PPC1-Bug>



IOP - I/O Physical (Direct Disk Access)

3-98

3

Example 4: Format the specified device with the option to ignore 
the grown defect list.

PPC1-Bug>IOP
Controller LUN    =00?  <Return>
Device LUN        =00?  <Return>
Read/Write/Format =R? F <Return>
Starting Block    =00000000?  <Return>
Track/Disk (T/D)  =D?  <Return>
Flag Byte         =00?  8 <Return>
Address Modifier  =00?  <Return>
PPC1-Bug>



IOT - I/O Configure Disk Controller

3-99

3

IOT - I/O Configure Disk Controller

Command Input

IOT [;[A|F|H|T]] 

Options

Description

The IOT command allows you to set-up (ÒteachÓ) a new disk 
configuration in the PPCBug for use by the system call disk 
functions. IOT lets you modify the controller and device descriptor 
tables used by the system call functions for disk access. Note that 
because the PPCBug commands that access the disk use the system 
call disk functions, changes in the descriptor tables affect all those 
commands. These include the IOP and PBOOT commands, and 
also any user program that uses the system call disk functions.

Refer to Table E-2 for information on formatting floppy disk drives. 

Before attempting to access the disks with the IOP command, you 
should verify the parameters and, if necessary, modify them for the 
specific media and drives used in the system. (Refer to Appendix E 
for details.)

A List all the disk controllers which are supported by PPCBug. SCSI 
controllers are identiÞed with an asterisk (*). Each PCI controller 
is only listed once.

F Force a device descriptor into the Device Descriptor Table. This 
option makes it easier to debug a particular device, in the event 
the device probe for the speciÞed device fails. 

H List all the disk controllers which are available to the system. 
SCSI controllers are identiÞed by an asterisk (*).

T Probe the system for I/O controllers. This option basically 
invokes the IOI command with no options.



IOT - I/O Configure Disk Controller

3-100

3

Note that during a boot, the configuration sector is normally read 
from the disk, and the device descriptor table for the LUN used is 
modified accordingly. If you wish to read/write using IOP from a 
disk that has been booted, IOT will not be required, unless the 
system is reset.

A device probe with entry into the device descriptor table is done 
whenever a specified device is accessed via IOT. 

The device probe mechanism utilizes the SCSI commands Inquiry 
and Mode Sense. If the specified controller is non-SCSI, the probe 
simply returns the status device present and unknown . The 
device probe makes an entry into the device descriptor table with 
the pertinent data. After an entry has been made, the next time a 
probe is done it simply returns with the status device present  
(pointer to the device descriptor). 

Note that reconfiguration is only necessary when you wish to read 
or write a disk which is different than the default set by the IOP 
command. Reconfiguration is normally done automatically by the 
PBOOT command when booting from a disk which is different 
from the default. 

When invoked without options, the IOT command enters an 
interactive subcommand mode where the descriptor table values 
currently in effect are displayed one-at-a-time. You may change the 
displayed value by typing a new value, followed by the Return key. 
To leave the field unaltered, press the Return key without typing a 
new value.

You may also enter a special character, either at the prompt or after 
typing new data, for scrolling through the fields. The special 
characters are:



IOT - I/O Configure Disk Controller

3-101

3

All numerical values are interpreted as hexadecimal numbers. You 
may enter decimal values by preceding the number with an &.

The following information prompts appear with the default field 
values (some of the prompts are device-dependent):

Controller LUN       =00?

The Controller LUN

Device LUN           =00?

The Device LUN

If the Controller LUN and Device LUN selected do not 
correspond to a valid controller and device, then IOT outputs 
the message Invalid LUN  and you are prompted for the two 
LUNs again. 

Device Type [00-1F]  =00?

V or v Open the next Þeld. This is the default, and remains in 
effect until changed by entering one of the other special 
characters.

^ Back up and open the previous Þeld

= Re-open the same Þeld

. Terminate the IOT command, and return control to the 
debugger

$00 Direct-access (e.g., magnetic disk)
$01 Sequential-access (e.g., magnetic tape)
$02 Printer
$03 Processor
$04 Write-once (e.g., some optical disks)
$05 CD-ROM
$06 Scanner
$07 Optical Memory (e.g., some optical disks)
$08 Medium Changer (e.g., jukeboxes)



IOT - I/O Configure Disk Controller

3-102

3

Only the $00, $01, $05, and $07 are supported by the I/O 
controller drivers.

Attribute Parameters

The parameters and attributes that are associated with a particular 
device are determined by a parameter and an attribute mask that is 
a part of the device definition. The device that has been selected 
may have any combination of the following parameters and 
attributes: 

Sector Size:
0- 128 1- 256 2- 512 
3-1024 4-2048 5-4096 =01 (0-5)? 

The number of data bytes per sector. 

Block Size:
0- 128 1- 256 2- 512 
3-1024 4-2048 5-4096 =01 (0-5)? 

The units in which a transfer count is speciÞed when doing a 
disk/tape block transfer. The block size can be smaller, equal to, 
or greater than the physical sector size, as long as (Block Size) * 
(Number of Blocks) / (Physical Sector Size) is an integer. 

Sectors/Track         =0020?

The number of data sectors per track, and is a function of the 
device being accessed and the sector size speciÞed. 

Starting Head         =10?

The starting head number for the device. It is normally zero for 
Winchester and ßoppy drives. It is nonzero for dual volume 
SMD drives. 

$09 Communications
$0A, $0B Graphic Arts Pre-Press
$0C-$1E Reserved
$0F Unknown or no device type



IOT - I/O Configure Disk Controller

3-103

3

Number of Heads       =05?

The number of heads on the drive. 

Number of Cylinders   =0337?

The number of cylinders on the device. For ßoppy disks, the 
number of cylinders depends on the media size and the track 
density.

Precomp. Cylinder     =0000?

The cylinder number at which precompensation should occur 
for this drive. This parameter is normally speciÞed by the drive 
manufacturer. 

Reduced Write Current Cylinder =0000?

The cylinder number at which the write current should be 
reduced when writing to the drive. This parameter is normally 
speciÞed by the drive manufacturer. 

Interleave Factor     =00?

The manner in which the sectors are formatted on a track. 
Normally, consecutive sectors in a track are numbered 
sequentially in increments of 1 (interleave factor of 1). The 
interleave factor controls the physical separation of logically 
sequential sectors. This physical separation gives the host time 
to prepare to read the next logical sector without requiring the 
loss of an entire disk revolution. 

Spiral Offset         =00?

The number of sectors that the Þrst sector of each track is offset 
from the index pulse. This is used to reduce latency when 
crossing track boundaries. 

ECC Data Burst Length =0000?

The number of bits to correct for an ECC error when supported 
by the disk controller

Step Rate Code      =00?



IOT - I/O Configure Disk Controller

3-104

3

The rate at which the read/write heads can be moved when 
seeking a track on the disk. The encoding is as follows: 

Single/Double DATA Density =D (S/D)?

Single/Double TRACK Density =D (S/D)?

The density (tracks per inch) 

Single/Equal_in_all Track zero density =S (S/E)?

The data density of track 0, either a single density or equal to the 
density of the remaining tracks. For Equal_in_all, the 
Single/Double data density ßag indicates the density of track 0. 

Slow/Fast Data Rate   =S (S/F)?

The data rate for ßoppy disk devices

Step Rate
Code 
(Hex)

Winchester 
Hard Disks 

3-1/2 and 
5-1/4 Inch

Floppy

8-Inch
Floppy

00 0 msec 12 msec 6 msec

01 6 msec 6 msec 3 msec

02 10 msec 12 msec 6 msec

03 15 msec 20 msec 10 msec

04 20 msec 30 msec 15 msec

S Single (FM) data density 

D Double (MFM) data density

S 48 TPI = Single Track Density

D 96 TPI = Double Track Density

S 250 kHz data rate

F 500 kHz data rate



IOT - I/O Configure Disk Controller

3-105

3

Gap 1                 =07?

The number of words of zeros that are written before the header 
Þeld in each sector during format. 

Gap 2                 =08?

The number of words of zeros that are written between the 
header and data Þelds during format and write commands

Gap 3                 =00?

The number of words of zeros that are written after the data 
Þelds during format commands

Gap 4                =00?

The number of words of zeros that are written after the last 
sector of a track and before the index pulse

Spare Sectors Count   =00?

The number of sectors per track allocated as spare sectors. These 
sectors are only used as replacements for bad sectors on the 
disk.

Examples

Example 1: Examine the default parameters of a 5-1/4 inch floppy 
disk.

PPC1-Bug>IOT <Return>
Controller LUN       =00? <Return>
Device LUN           =00? 2 <Return>
Device Type [00-1F]  =00? <Return>
Removable Media = Y (Y/N)? <Return>
Sector Size:
0- 128 1- 256 2- 512
3-1024 4-2048 5-4096 =01 (0-5)? <Return>
Block Size:
0- 128 1- 256 2- 512
3-1024 4-2048 5-4096 =01 (0-5)? <Return>



IOT - I/O Configure Disk Controller

3-106

3

Sectors/track        =0010? <Return>
Number of heads      =02? <Return>
Number of cylinders  =0050? <Return>
Precomp. Cylinder    =0028? <Return>
Step  Rate  Code     =00?  <Return>
Single/Double TRACK density=D (S/D)?  <Return>
Single/Double DATA density =D (S/D)? <Return>
Single/Equal_in_all  Track  zero density =S (S/E)? <Return>
Slow/Fast Data Rate  =S (S/F)? <Return>
PPC1-Bug>

Example 2: 

PPC1-Bug>iot;a <Return>
I/O Controllers Supported:
CLUN  CNTRL-TYPE  CNTRL-Address  N-Devices
   1  PC8477    $800003F0       1
   2  PC87303IDE   $80000 1F0      2
   X  NCR53C810      Any PCI       *
   X  NCR53C825      Any PCI       *
   X  NCR53C875      Any PCI       *
   X  SL82C105       Any PCI       4
   X  PBC-EIDEF1     Any PCI       4
PPC1-Bug>



IRD, IRM, IRS - Idle MPU Register Display/Modify/Set

3-107

3

IRD, IRM, IRS - Idle MPU Register Display/Modify/Set

Note These commands are for multi-processor boards only.

Command Inputs

IRD MPU# ARGS

IRM MPU# ARGS

IRS MPU# ARGS

Descriptions

The IRD command allows you to display the idle processor's 
registers. The idle processor is specified by the argument MPU#. 
This argument depends on your configuration. The ARGS 
argument is equivalent to the argument string as required by the 
command RD. Refer to the RD command for argument syntax.

The IRM command allows you to examine/modify the idle 
processor's registers. The idle processor is specified by the 
argument MPU#. This argument depends on your configuration. 
The ARGS argument is equivalent to the argument string as 
required by the command RM. Refer to the RM command for 
argument syntax.

The IRS command allows you to display/set a particular register of 
the idle processor's register set. The idle processor is specified by 
the argument MPU#. This argument depends on your 
configuration. The ARGS argument is equivalent to the argument 
string as required by the command RS. Refer to the RS command 
for argument syntax.

Refer to the individual commands (RD, RM, and RS) for examples.



LO - Load S-Records from Host

3-108

3

LO - Load S-Records from Host

Command Input

LO [PORT] [ADDR] [;[X] [C] [T]] [=text]

Arguments

Options

More than one option may be used.

PORT Port to be used for the downloading. 
The default is port 1.

ADDR Offset address which is to be added to the address contained 
in the address Þeld of each record. This causes the records to 
be stored to memory at different locations than would 
normally occur. The contents of the automatic offset register 
are not added to the S-record addresses.

X Echo the S-records to your terminal as they are read in at the 
host port.

C Ignore checksum. A checksum for the data contained within 
an S-record is calculated as the S-record is read in at the port. 
Normally, this calculated checksum is compared to the 
checksum contained within the S-record and if the compare 
fails, an error message is sent to the screen on completion of 
the download. If this option is selected, then the comparison 
is not made.

T System Call code. This option causes LO to set the target 
register R04 to ÔLO$01Õ ($4C4F2001). 
The ASCII string LO indicates the LO command. The code 
$01 indicates system call support with stack 
parameter/result passing and system call disk support. 
This code can be used by the downloaded program to select 
the appropriate calling convention when invoking debugger 
functions (necessary because some Motorola debuggers use 
conventions different from PPCBug, and they set a different 
code in R05).



LO - Load S-Records from Host

3-109

3

Description

The LO command downloads Motorola S-record files from a host 
system to the debugger host. The LO command accepts serial data 
from the host and loads it into memory.

Note You can download S-records at any baud rate 
supported by both the debugger and the host system. If 
the X option is specified, make sure that the baud rate 
of the host system is less than or equal to the baud rate 
of the console. If there are any problems loading the 
records, reduce the baud rate of the host.

In order to accommodate host systems that echo all received 
characters, the above-mentioned text string is sent to the host one 
character at a time and characters received from the host are read 
one-at-a-time. After the entire command has been sent to the host, 
LO keeps looking for a line feed (LF) character from the host, 
signifying the end of the echoed command. No data records are 
processed until this <LF> is received. If the host system does not 
echo characters, LO still keeps looking for a <LF> character 
before data records are processed. For this reason, it is required in 
situations where the host system does not echo characters, that the 
first record transferred by the host system be a header record. The 
header record is not used but the <LF> after the header record 
serves to break LO out of the loop so that data records are 
processed.

=text The command that is sent to the host before the debugger 
begins to look for S-records at the host port. The command is 
sent to the host device to initiate the download. Do not 
enclose text in quote marks.
Do not separate the = and text with a space. If the host is 
operating full duplex, the string is also echoed back to the 
host port by the host and appears on your terminal screen.



LO - Load S-Records from Host

3-110

3

The S-record format (refer to Appendix D) allows for an entry point 
to be specified in the address field of the termination record of an S-
record block. The contents of the address field of the termination 
record (plus the offset address, if any) are put into the target IP. 
Thus, after a download, you need only enter GO instead of GO 
ADDR to execute the code that was downloaded.

If a non-hexadecimal character is encountered within the data field 
of a data record, then the part of the record which had been received 
up to that time is printed to the screen and the PPCBug error 
handler is invoked to point to the faulty character.

If the embedded checksum of a record does not agree with the 
checksum calculated by PPCBug and if the checksum comparison 
has not been disabled via the C option, then an error condition 
exists. A message is output stating the address of the record (as 
obtained from the address field of the record), the calculated 
checksum, and the checksum read with the record. A copy of the 
record is also output. This is a fatal error and causes the command 
to abort.

When a load is in progress, each data byte is written to memory and 
then the contents of this memory location are compared to the data 
to determine if the data stored properly. If for some reason the 
compare fails, then a message is output stating the address where 
the data was to be stored, the data written, and the data read back 
during the compare. This is also a fatal error and causes the 
command to abort.

Because processing of the S-records is done character-by-character, 
any data that was deemed good will have already been stored to 
memory if the command aborts due to an error.



LO - Load S-Records from Host

3-111

3

Example

For this example, assume that a host system was used to create the 
following program:

        .file   “test.s”
#
# retrieve contents of the RTC registers
#
        .toc
T.FD:   .tc     FD.4330000080000000[tc] ,1127219200,-2147483648
        .toc
T..test:
        .tc     ..test[tc], test[ds]
T..LDATA:
        .tc     ..LDATA[tc], .LDATA
T..LRDATA:
        .tc     ..LRDATA[tc], .LRDATA
#
        .align  2
        .globl  test[ds]
        .csect  test[ds]
        .long   .test[pr], TOC[tc0], 0
        .globl  .test[pr]
        .csect  .test[pr]
.test:
        mfspr   r4,4            # load RTC upper register
        stw     r4,0(r3)        # write to caller’s buffer
        mfspr   r4,5            # load RTC lower register
        stw     r4,4(r3)        # write to caller’s buffer
        bclr    0x14,0x0        # return to the caller
FE_MOT_RESVD.test:
        .csect  [rw]
        .align  2
.LDATA:
        .csect  [rw]
        .align  2
.LRDATA:

Also assume program has been compiled and linked to start at 
address 65040000, and the program was converted into an S-record 
file named test.mx as follows:

S325650400007C8402A6908300007C8502A6908300044E80002000000000650400006504002412
S30D65040020000000000000000069
S7056504000091



LO - Load S-Records from Host

3-112

3

Load this file into memory for execution at address $40000 as 
follows:

PPC1-Bug>TM <Return>
Escape character: $01=^A.

Go into transparent mode to establish host link, input the necessary 
character sequences to gain access to the S-Record file test.mx.

.

.

.

Exit transparent mode by inputting the escape character sequence, 
default is Ctrl-a. At this point control will return to the debugger 
prompt.

.
PPC1-Bug>

PPC1-Bug>LO ,,-65000000 ;X=cat test.mx <Return>
cat test.mx
S325650400007C8402A6908300007C8502A6908300044E800020000000006504000065040
02412
S30D65040020000000000000000069
S7056504000091
PPC1-Bug>

The S-records are echoed to the terminal because of the X option.

The offset address of -65000000 was added to the addresses of the 
records in TEST.MX and caused the program to be loaded to 
memory starting at $40000. The text cat test.mx  is an operating 
system command line that caused the file to be copied by the 
operating system to the port which is connected with the debugger 
hostÕs host port.

PPC1-Bug>DS 40000,40014 <Return>
00040000 7C8402A6  MFSPR       R4,4
00040004 90830000  STW         R4,$0(R3) ($00041000)
00040008 7C8502A6  MFSPR       R4,5
0004000C 90830004  STW         R4,$4(R3) ($00041004)
00040010 4E800020  BCLR        20,0
PPC1-Bug>

The target IP now contains the entry point of the code in memory 
($40000).



LO - Load S-Records from Host

3-113

3

PPC1-Bug>RD <Return>
IP     =00040000 MSR    =00003030 CR     =00000020 FPSCR  =00000000
R0     =00000000 R1     =00020000 R2     =FFF0178C R3     =00041000
R4     =00000000 R5     =00000000 R6     =00000000 R7     =00000000
R8     =00000000 R9     =00000000 R10    =00000000 R11    =00000000
R12    =00000000 R13    =00000000 R14    =00000000 R15    =00000000
R16    =00000000 R17    =00000000 R18    =00000000 R19    =00000000
R20    =00000000 R21    =00000000 R22    =00000000 R23    =00000000
R24    =00000000 R25    =00000000 R26    =00000000 R27    =00000000
R28    =00000000 R29    =00000000 R30    =00000000 R31    =00000000
SPR0   =00000000 SPR1   =00000000 SPR8   =00020014 SPR9   =00000000
00040000 7C8402A6  MFSPR       R4,4
PPC1-Bug>



MA - Macro Define/Display   NOMA - Macro Delete

3-114

3

MA - Macro Define/Display  
NOMA - Macro Delete

Command Input

MA [NAME|;L]

NOMA [NAME]

Description

The MA command allows you to define a macro consisting of any 
number of debugger commands with optional parameter 
specifications.

NOMA command is used to delete either a single macro or all 
macros.

The NAME argument is a macro name, which may be any 
combination of one to eight alphanumeric characters.

Enter MA without a macro name to view a list of all currently 
defined macros and their definitions.

When MA is invoked with the name of a currently defined macro, 
the macro definition is displayed. Line numbers, which are 
assigned in increments of 10, are shown to facilitate editing with the 
MAE command. 

If MA is invoked with a valid name that does not currently have a 
definition, then the debugger enters the macro definition mode. In 
response to each macro definition prompt M=, type a debugger 
command followed by the return key. To exit the macro definition 
mode, press the Return key (null line) at the prompt. 

Commands are not checked for syntax until the macro is invoked. 
A macro must contain primitive debugger commands (i.e., no 
definition). If the macro contains errors, you may either edit it with 
the MAE command or delete with the NOMA command and 
redefine it.



MA - Macro Define/Display   NOMA - Macro Delete

3-115

3

Macro definitions are stored in a string pool of fixed size. If the 
string pool becomes full while in the definition mode, the offending 
string is discarded, a message STRING POOL FULL, LAST LINE 
DISCARDED is printed and the user is returned to the debugger 
command prompt. This also happens if the string entered would 
cause the string pool to overflow. The string pool has a capacity of 
511 characters. The only way to add or expand macros when the 
string pool is full is either to delete or edit macro(s).

Debugger commands contained in macros may reference 
arguments supplied at invocation time. Arguments are denoted in 
macro definitions by embedding a back slash (\) followed by a 
numeral. Up to ten arguments are permitted, numbered 0 through 
9. A definition containing a back slash followed by a zero would 
cause the first argument to that macro to be inserted in place of the 
string Ò\0Ó. Similarly, the second argument would be used in place 
of the string Ò\1Ó.

For instance, you may create a macro named ARGUE, with three 
arguments, \0, \1, and \2. Entering ARGUE 3000 1 ;B at the 
debugger prompt invokes the macro, with the text strings 3000, 1, 
and ;B replacing the \0, \1, and \2 respectively, within the body of 
the macro.

The L option toggles the loop continuous macro mode. If the 
current macro mode is loop continuous, once a macro is invoked, it 
will automatically be re-invoked for continuous operation.

To delete a macro, invoke NOMA followed by the name of the 
macro. Invoking NOMA without specifying a valid macro name 
deletes all macros. If NOMA is invoked with a valid macro name 
that does not have a definition, an error message is printed.

Examples

Example 1: Define the macro ABC.

PPC1-Bug>MA ABC <Return>
M=MD 3000 <Return>
M=GO \0 <Return>
M= <Return>
PPC1-Bug>



MA - Macro Define/Display   NOMA - Macro Delete

3-116

3

Example 2: Define the macro DIS.

PPC1-Bug>MA DIS <Return>
M=MD \0:17;DI <Return>
M= <Return>
PPC1-Bug>

Example 3: List all currently defined macros.

PPC1-Bug>MA <Return>
MACRO ABC
010 MD 3000
020 GO \0
MACRO DIS
010 MD \0:17;DI
PPC1-Bug>

Example 4: List the definition of the macro ABC.

PPC1-Bug>MA ABC <Return>
MACRO ABC
010 MD 3000
020 GO \0
PPC1-Bug>

Example 5: Delete the macro DIS.

PPC1-Bug>NOMA DIS <Return>
PPC1-Bug>

Example 6: List all currently defined macros.

PPC1-Bug>MA <Return>
MACRO ABC
010 MD 3000
020 GO \0
PPC1-Bug>

Example 8: Delete all defined macros.

PPC1-Bug>NOMA <Return>
PPC1-Bug>

Example 9: List all currently defined macros.

PPC1-Bug>MA <Return>
NO MACROS DEFINED
PPC1-Bug>



MAE - Macro Edit

3-117

3

MAE - Macro Edit

Command Input

MAE NAME LINE # [STRING]

Arguments

Description

The MAE command allows you to edit a macro. MAE is line 
oriented and allows inserting, deleting, and replacing individual 
lines.

Replace a line by specifying its line number and the replacement 
text.

Insert a line between two existing lines by specifying a LINE # that 
is between line numbers of the two existing lines. For instance, 
assign LINE # 15 to a new line that you want to insert between lines 
010 and 020. The text of the new line is the STRING.

Deleted if its line by specifying a line number but without any the 
replacement text.

The MAE command displays the macro, as edited, with the lines 
renumbered in increments of 10.

Attempting to delete a nonexistent line results in an error message 
being displayed. MAE does not permit deletion of a line if the 
macro consists only of that line; you must remove it using the 
NOMA command.

MAE operates only on previously defined macros (use MA to 
define new macros).

NAME Macro name, which may be any combination of one to 
eight alphanumeric characters

LINE # Line number (1-999) to be replaced or where a new line is 
to be inserted

STRING Line to be inserted or replaced



MAE - Macro Edit

3-118

3

Line numbers serve one purpose: specifying the location within a 
macro definition to perform the editing function. After the editing 
is complete, the macro definition is displayed with a new set of line 
numbers.

Examples

Example 1: Add a line to macro ABC. 

List definition of macro ABC. 

PPC1-Bug>MA ABC <Return>
MACRO ABC
010 MD 3000
020 GO \0
PPC1-Bug>

Then add a line to macro ABC. 

PPC1-Bug>MAE ABC 15 RD <Return>
MACRO ABC
010 MD 3000
020 RD
030 GO \0
PPC1-Bug>

Example 2: Replace line 010 from macro ABC. 

PPC1-Bug>MAE ABC 10 MD 10+Z0 <Return>
MACRO ABC
010 MD 10+Z0
020 RD
030 GO \0
PPC1-Bug>

Example 3: Remove the specified line from the macro ABC.

PPC1-Bug>MAE ABC 30 <Return>
MACRO ABC
010 MD 10+Z0
020 RD
PPC1-Bug>



MAL - Enable Macro Listing   NOMAL - Disable Macro Listing

3-119

3

MAL - Enable Macro Listing  
NOMAL - Disable Macro Listing

Command Input

MAL

NOMAL

Description

The MAL command allows you to view expanded macro lines as 
they are executed. This is especially useful when errors result, as 
the line that caused the error appears on the display.

The NOMAL command is used to suppress the listing of the macro 
lines during execution.

The use of MAL and NOMAL is a convenience for you and in no 
way interacts with the function of the macros.



MAR - Load Macros

3-120

3

MAR - Load Macros

Command Input

MAR [controllerLUN] [[deviceLUN] [block#]]

Arguments

Description

The MAR command loads macros that have previously been saved 
by MAW. Care should be taken to avoid attempting to load macros 
from a location on the disk or tape other than that written to by the 
MAW command. While MAR checks for invalid macro names and 
other anomalies, the results of such a mistake are unpredictable.

Note MAR discards all currently defined macros before 
loading from disk or tape.

Default are set each time either MAR or MAW is invoked. When 
either command has been used, the default controller, device, and 
block numbers are set to those used. If macros were loaded from 
controller 0, device 2, block 8 with command MAR, the defaults for 
a later invocation of MAW would be the same. 

Errors encountered during I/O are reported along with the 16-bit 
status word returned by the I/O routines. 

controllerLUN Logical Unit Number (LUN) of the controller to 
which the following device is attached. This initially 
defaults to LUN 0. 

deviceLUN LUN of the device to save/load macros to/from. This 
initially defaults to LUN 0. 

block# Number of the block on the above device that is the 
Þrst block of the macro list. This initially defaults to 
block 2. 



MAR - Load Macros

3-121

3

Example

For the example, assume that controller 0, device 2 is accessible.

Load macros from block 3.

PPC1-Bug> MAR 0,2,3 <Return>
PPC1-Bug>

List macros.

PPC1-Bug> MA <Return>
MACRO ABC
010 MD 3000
020 GO \0
PPC1-Bug>

Define macro ASM.

PPC1-Bug> MA ASM <Return>
M=MM \0;DI
M= (CR)
PPC1-Bug>

List all macros.

PPC1-Bug> MA <Return>
MACRO ABC
010 MD 3000
020 GO \0
MACRO ASM
010 M=MM \0;DI
PPC1-Bug>



MAW - Save Macros

3-122

3

MAW - Save Macros

Command Input

MAW [controllerLUN] [[deviceLUN] [block#]] 

Arguments

Description

The MAW command saves the currently defined macros to disk or 
tape. 

The selected block number, controller LUN, and device LUN are 
displayed, followed by a prompt to confirm the save (OK to 
proceed (y/n)? ).

The list is saved as a series of strings and may take up to three 
blocks. If no macros are currently defined, no write is done. A NO 
MACRO DEFINED message is displayed. 

Default are set each time either MAR or MAW is invoked. When 
either command has been used, the default controller, device, and 
block numbers are set to those used. If macros were loaded from 
controller 0, device 2, block 8 with command MAR, the defaults for 
a later invocation of MAW would be the same. 

Errors encountered during I/O are reported along with the 16-bit 
status word returned by the I/O routines. 

controllerLUN Logical Unit Number (LUN) of the controller to 
which the following device is attached. This initially 
defaults to LUN 0. 

deviceLUN LUN of the device to save/load macros to/from. This 
initially defaults to LUN 0. 

block# Number of the block on the above device that is the 
Þrst block of the macro list. This initially defaults to 
block 2. 



MAW - Save Macros

3-123

3

Example

For the example, assume that controller 0, device 2 is accessible.

Load macros from block 3.

PPC1-Bug> MAR 0,2,3 <Return>
PPC1-Bug>

List macros.

PPC1-Bug> MA
MACRO ABC
010 MD 3000
020 GO \0
PPC1-Bug>

Define macro ASM.

PPC1-Bug> MA ASM <Return>
M=MM \0;DI
M= (CR)
PPC1-Bug>

List all macros.

PPC1-Bug> MA <Return>
MACRO ABC
010 MD 3000
020 GO \0
MACRO ASM
010 M=MM \0;DI
PPC1-Bug>

Save macros to block 8, previous device.

PPC1-Bug> MAW ,,8 <Return>

Saving to:  VME320, Controller 0, Drive 2, Block/File Number 8 
Number of Logical Blocks = 2 
OK to proceed (y/N)? Y <Return> 
PPC1-Bug> 



MD, MDS - Memory Display

3-124

3

MD, MDS - Memory Display

Command Input

MD ADDR[:COUNT | ADDR] [; [B|H|W|S|D|DI] ]

MDS ADDR[:COUNT | ADDR] [; [B|H|W|S|D|DI] ]

Options

Description

The MD and MDS commands display the contents of multiple 
memory locations all at once. 

The default data type is word. Also, for the integer data types, the 
data is always displayed in hexadecimal along with its ASCII 
representation. 

The optional COUNT argument specifies the number of data items 
to be displayed (or the number of disassembled instructions to 
display if the disassembly option is selected). The default is 8 for 
MD. MDS displays 128 items (a sector) as the default.

To re-execute the command, press the Return key at the prompt 
immediately after the command has executed. The command 
displays an equal number of data items or lines beginning at the 
next address.

Integer Data Types

B Byte

H Half-word

W Word

Floating Point Data Types

S Single Precision

D Double Precision

DI Enable the one-line disassembler. All other options are invalid if 
DI is selected.



MD, MDS - Memory Display

3-125

3

Examples

Example 1:

PPC1-Bug>MD 22000;H <Return>
00022000  2800 1942 2900 1942  2800 1842 2900 2846  (..B)..B(..B).(F
PPC1-Bug> <Return>
00022010  FC20 0050 ED07 9F61  FF00 000A E860 F060  | .Pm..a....h'p'
PPC1-Bug>

Example 2: For this example, assume the microprocessor register 
state is R5=00023627.

PPC1-Bug>MD R5:&19;B <Return>
00023627  4F 82 00 C5 9B 10 33 7A DF 01 6C 3D 4B 50 0F 0F  O..E..3z_.l=KP..
00023637  31 AB 80                                          1+.
PPC1-Bug>

Example 3:

PPC1-Bug>MD 30000;DI <Return>
00030000 3CA00000  ADDIS       R5,R0,$0
00030004 2B040000  CMPLI       CRF6,0,R4,$0
00030008 419A0014  BC          12,26,$0003001C
0003000C 98A30000  STB         R5,$0(R3) ($00041004)
00030010 3884FFFF  ADDI        R4,R4,$FFFFFFFF
00030014 38630001  ADDI        R3,R3,$1
00030018 4BFFFFEC  B           $00030004
0003001C 4E800020  BCLR        20,0
PPC1-Bug>

Example 4:

PPC1-Bug>MD 20000;D <Return>
00020000 0_521_9415513BBFC7C= 3.1400000000000010_E+0087
00020008 1_740_05800C000D2A5=-5.8508426708663386_E+0250
00020010 0_2B3_BFF25B8031E80= 1.9999900000000014_E-0100
00020018 0_47C_97EC34022A8D5= 6.7777778899999985_E+0037
00020020 0_423_6FEB11A600001= 9.8762300000000015_E+0010
00020028 0_3F8_47B56E95931C5= 1.0000876423100000_E-0002
00020030 0_2B8_407C89A021ADB= 4.5789000000000044_E-0099
00020038 0_44C_52D0F4552863F= 2.0000179999999999_E+0023
PPC1-Bug>



MD, MDS - Memory Display

3-126

3

Example 5:

PPC1-Bug>MD 10000;S <Return>
00020000 0_A4_194155= 1.6455652147200000_E+0011
00020004 0_27_3BFC7C= 4.7454405384196168_E-0027
00020008 1_E8_005800=-4.0673757930760459_E+0031
0002000C 1_80_00D2A5=-2.0128567218780518_E+0000
00020010 0_56_3BFF25= 6.6789829960070541_E-0013
00020014 1_70_031E80=-3.1261239200830460_E-0005
00020018 0_8F_497EC3= 1.0316552343750000_E+0005
0002001C 0_80_22A8D5= 2.5415546894073486_E+0000
PPC1-Bug>

Example 6:

PPC1-Bug>MDS 30000 <Return>
00030000  3CA00000 2B040000 419A0014 98A30000  <...+...A.......
00030010  3884FFFF 38630001 4BFFFFEC 4E800020  8...8c..K...N..
00030020  FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  ................
00030030  FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  ................
00030040  00000000 00000000 00000000 00000000  ................
00030050  00000000 00000000 00000000 00000000  ................
00030060  FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  ................
00030070  FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  ................
00030080  00000000 00000000 00000000 00000000  ................
00030090  00000000 00000000 00000000 00000000  ................
000300A0  FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  ................
000300B0  FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  ................
000300C0  00000000 00000000 00000000 00000000  ................
000300D0  00000000 00000000 00000000 00000000  ................
000300E0  FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  ................
000300F0  FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  ................
00030100  00000000 00000000 00000000 00000000  ................
00030110  00000000 00000000 00000000 00000000  ................
00030120  FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  ................
00030130  FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  ................
00030140  00000000 00000000 00000000 00000000  ................
00030150  00000000 00000000 00000000 00000000  ................
00030160  FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  ................
00030170  FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  ................
00030180  00000000 00000000 00000000 00000000  ................
00030190  00000000 00000000 00000000 00000000  ................
000301A0  FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  ................
000301B0  FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  ................
000301C0  00000000 00000000 00000000 00000000  ................
000301D0  00000000 00000000 00000000 00000000  ................
000301E0  FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  ................
000301F0  FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF  ................
PPC1-Bug>



MD, MDS - Memory Display

3-127

3

Example 7:

PPC1-Bug>MDS 30000;B <Return>
00030000  3C A0 00 00 2B 04 00 00  41 9A 00 14 98 A3 00 00  <...+...A.......
00030010  38 84 FF FF 38 63 00 01  4B FF FF EC 4E 80 00 20  8...8c..K...N..
00030020  FF FF FF FF FF FF FF FF  FF FF FF FF FF FF FF FF  ................
00030030  FF FF FF FF FF FF FF FF  FF FF FF FF FF FF FF FF  ................
00030040  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00030050  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00030060  FF FF FF FF FF FF FF FF  FF FF FF FF FF FF FF FF  ................
00030070  FF FF FF FF FF FF FF FF  FF FF FF FF FF FF FF FF  ................
PPC1-Bug>

Example 8:

PPC1-Bug>MDS 30000;H <Return>
00030000  3CA0 0000 2B04 0000  419A 0014 98A3 0000  <...+...A.......
00030010  3884 FFFF 3863 0001  4BFF FFEC 4E80 0020  8...8c..K...N..
00030020  FFFF FFFF FFFF FFFF  FFFF FFFF FFFF FFFF  ................
00030030  FFFF FFFF FFFF FFFF  FFFF FFFF FFFF FFFF  ................
00030040  0000 0000 0000 0000  0000 0000 0000 0000  ................
00030050  0000 0000 0000 0000  0000 0000 0000 0000  ................
00030060  FFFF FFFF FFFF FFFF  FFFF FFFF FFFF FFFF  ................
00030070  FFFF FFFF FFFF FFFF  FFFF FFFF FFFF FFFF  ................
00030080  0000 0000 0000 0000  0000 0000 0000 0000  ................
00030090  0000 0000 0000 0000  0000 0000 0000 0000  ................
000300A0  FFFF FFFF FFFF FFFF  FFFF FFFF FFFF FFFF  ................
000300B0  FFFF FFFF FFFF FFFF  FFFF FFFF FFFF FFFF  ................
000300C0  0000 0000 0000 0000  0000 0000 0000 0000  ................
000300D0  0000 0000 0000 0000  0000 0000 0000 0000  ................
000300E0  FFFF FFFF FFFF FFFF  FFFF FFFF FFFF FFFF  ................
000300F0  FFFF FFFF FFFF FFFF  FFFF FFFF FFFF FFFF  ................
PPC1-Bug>



MENU - System Menu

3-128

3

MENU - System Menu

Command Input

MENU 

Description

The MENU command displays the System Menu, which is shown 
below:

1  Continue System Start Up 
2  Select Alternate Boot Device 
3  Go to System Debugger 
4  Initiate Service Call 
5  Display System Test Errors 
6  Dump Memory to Tape 
Enter Menu #:

You can return to the debugger by entering 3 at the Enter Menu 
# prompt. (If you execute the Menu command from the PPC1-
Diag>  prompt, menu option 3 will return you to the PPCBug 
diagnostics.)

Refer to Appendix B for information on using the System Menu.



MM - Memory Modify

3-129

3

MM - Memory Modify

Command Input

MM ADDR [;[[B|H|W|S|D] [A] [N]]|[DI] ]

Options

Description

The MM command is used to view and change the contents of 
memory. The command reads and displays the contents of memory 
at the specified address and prompts you with a question mark (?). 

M is an alternate form of MM.

You may change the displayed value by typing a new value 
followed by the Return key. To leave the memory location 
unchanged, press the Return key without typing a new value. That 
memory location is closed and the next location is opened.

You may also enter a special character, either at the prompt or after 
typing new data, for scrolling through the memory locations. The 
special characters are:

Integer Data Types

B Byte

H Half-word

W Word

Floating Point Data Types

S Single Precision

D Double Precision

Other Options:

N Disable the read portion of the command

A Force alternate location accesses only

DI Enable the one-line assembler/disassembler. All other options 
are invalid if this option is selected.



MM - Memory Modify

3-130

3

The command reads the memory and verifies that the new contents 
match what was written. An error message appears if the value 
read back is not the same as the value written (i.e., if the write was 
not allowed).

When the one-line assembler/disassembler is enabled, the contents 
of the specified memory location are disassembled and displayed 
and you are prompted with a question mark (?) for input. At this 
point, you have three choices:

❏ Press the Return key. This closes the present location and 
continues with disassembly of next instruction.

❏ Enter a new source instruction and press the Return key. This 
invokes the assembler, which assembles the instruction and 
generates a listing file of one instruction.

❏ Enter a period (.) and press the Return key. This closes the 
present location and exits the MM command.

If a new source line is entered, the present line is erased and 
replaced by the new source line entered. If a printer port is configured 
(hard copy mode), a line feed is done instead of erasing the line.

If an error is found during assembly, an error message such as NON-
EXISTENT OPERAND or NON-EXISTENT MNEMONIC appears. The 
location being accessed is redisplayed.

Refer to Chapter 4 for information on the PPCBug assembler.

V or v Open the next memory location. This is the default, and 
remains in effect until changed by entering one of the 
other special characters.

^ Back up and open the previous memory location

= Re-open the same memory location (this is useful for 
examining I/O registers or memory locations that are 
changing over time)

. Terminate the MM command, and return control to the 
debugger



MM - Memory Modify

3-131

3

Examples

Example 1: Access location $20000, modify memory, modify and 
backup, and modify memory and exit.

PPC1-Bug>MM 20000;H <Return>
00020000 1234?  <Return>
00020002 5678? 4321 <Return>
00020004 9ABC? 8765^ <Return>
00020002 4321? <Return>
00020000 1234? ABCD. <Return>
PPC1-Bug>

Example 2: Word access to location $20004 with alternate location 
access option enabled, modify and reopen location, and exit 
memory modify.

PPC1-Bug>MM 10004;WA <Return>
00020004 CD432187? <Return>
0002000C 00068010? 68010+10= <Return>
0002000C 00068020? <Return>
0002000C 00068020? . <Return>
PPC1-Bug>

Example 3: Assemble a new source line.

PPC1-Bug>MM 40000;DI <Return>
00040000 00000000  WORD     $00000000? ADDIS R10,R0,1000 <Return>
00040000 3D401000  ADDIS    R10,R0,$1000
00040004 00000000  WORD     $00000000? ORI R10,R10,FFFF <Return>
00040004 614AFFFF  ORI      R10,R10,$FFFF
00040008 00000000  WORD     $00000000? . <Return>
PPC1-Bug>

Example 4: New source line with error.

PPC1-Bug>MM 40008;DI <Return>
00040008 00000000  WORD        $00000000? FOO R20,R0,10 <Return>
Assembler Error: Unknown Mnemonic

00040008 00000000  WORD        $00000000? ORI R20,R0,10 <Return>
00040008 60140010  ORI         R20,R0,$10
0004000C 00000000  WORD        $00000000? . <Return>
PPC1-Bug>



MM - Memory Modify

3-132

3

Example 5: Step to next location and exit MM.

PPC1-Bug>MM 40000;DI <Return>
00040000 3D401000  ADDIS       R10,R0,$1000? <Return>
00040004 614AFFFF  ORI         R10,R10,$FFFF? . <Return>
PPC1-Bug>

Example 6: Double precision floating point numbers.

PPC1-Bug>MM 20000;D <Return>
00020000 3.140000000000001_E+87? 1.2 <Return>
00020008 -5.8508426708663386_E+250? 2 <Return>
00020010 1.9999900000000014_E-100? 4.357E+10 <Return>
00020018 6.7777778899999985_E+37? 2.765E-99 <Return>
00020020 9.8762300000000015_E+10? -4.876E-34 <Return>
00020028 1.00008764231_E-2? -1.023E101 <Return>
00020030 4.5789000000000044_E-99? 1_7FF_FFFFFFFFFFFFF. <Return>
PPC1-Bug>

PPC1-Bug>MD 20000:7;D <Return>
00020000 0_3FF_3333333333333= 1.2000000000000000_E+0000
00020008 0_400_0000000000000= 2.0000000000000000_E+0000
00020010 0_422_449F2E0FFFFFF= 4.3569999999999992_E+0010
00020018 0_2B7_830E4EB15EA1B= 2.7650000000000032_E-0099
00020020 1_390_4410D74F66DA5=-4.8760000000000030_E-0034
00020028 1_54E_762B1924BFDD5=-1.0230000000000001_E+0101
00020030 1_7FF_FFFFFFFFFFFFF=-0.FFFFFFFFFFFFF000_E-0FFF
PPC1-Bug>

Example 7: Attempt to write to a location that is not available.

PPC1-Bug>MM 80000080 <Return>
80000080 00000000 ? 1
** WARNING: NO MATCH **
80000080 00000000 ? .
PPC1-Bug>



MMD - Memory Map Diagnostic

3-133

3

MMD - Memory Map Diagnostic

Command Input

MMD RANGE INCREMENT [;B|H|W]

Options

Description

The MMD command is used to find and display ranges of 
addresses that are readable. This is done by reading memory 
locations within the RANGE. If a successful transaction to a location 
is completed, that address is included in a found range, else in a 
not-found range. The transaction (a read) is done with the data type 
specified on the command line.

INCREMENT is the value that is added to the old transaction 
address after the transaction is complete to form the next 
transaction address. The INCREMENT will be scaled by the data 
type, i.e., 1x for byte, 2x for half-word, and 4x for word.

The default data type is word.

Examples

Example 1: Look for any memory between $0 and $10000000 with 
an increment of $10000 by bytes. MMD reports that only $800000 
(8Mbytes) of memory was found.

PPC1-Bug>MMD 0 10000000 10000;B <Return>
Effective address: 00000000
Effective address: 10000000
$00000000-$007F0000 PRESENT
$00800000-$0FFF0000 NOT-PRESENT
PPC1-Bug>

B Byte

H Half-word

W Word



MMD - Memory Map Diagnostic

3-134

3

Example 2: Look for any memory between $10000000 and 
$FFFFFFFF with an increment of $40000 by bytes.

PPC1-Bug>MMD 10000000 FFFFFFFF 40000;B <Return>
Effective address: 10000000
Effective address: FFFFFFFF
$10000000-$7FFC0000 NOT-PRESENT
$80000000-$9FFC0000 PRESENT
$A0000000-$FFEC0000 NOT-PRESENT
$FFF00000-$FFFC0000 PRESENT
PPC1-Bug>



MS - Memory Set

3-135

3

MS - Memory Set

Command Input

MS ADDR {Hexadecimal number} {'string'}

Arguments

Description

The MS command writes data to memory starting at the specified 
address.

Note that one or more hexadecimal numbers and ASCII strings may 
be entered in the same command.

Example

For this example, assume that memory is initially cleared:

PPC1-Bug>MS 25000 0123456789ABCDEF 'This is "PPC1Bug"' 23456 <Return>
PPC1-Bug>

PPC1-Bug>MD 25000:20;B <Return>
00025000  01 23 45 67 89 AB CD EF  54 68 69 73 20 69 73 20  .#Eg....This is
00025010  22 45 56 4D 42 75 67 22  23 45 60 00 00 00 00 00  “PPC1Bug”#E‘.....
PPC1-Bug>

Hexadecimal number Hexadecimal value to be written to memory.
It is not assumed to be of a particular size, so it 
can contain any number of digits (as allowed 
by command line buffer size). If an odd 
number of digits are entered, the least 
signiÞcant nibble of the last byte accessed will 
be unchanged.

string An ASCII string to be written to memory. 
Enclose it in single quotes ('). To include a 
quote as part of string, enter two consecutive 
quotes.



MW - Memory Write

3-136

3

MW - Memory Write

Command Input

MW ADDR DATA [;B|H|W]

Options

The default data size is word.

Description

The MW command writes a data pattern (DATA) to a specific 
location (ADDR). No verify (read) is performed.

Examples

Example 1:

PPC1-Bug>MW 1E000 55AA55AA <Return>
Effective address: 0001E000
Effective data   : 55AA55AA
PPC1-Bug>

PPC1-Bug>MD 1E000 <Return>
0001E000  55AA55AA 00000000 00000000 00000000  U.U.............
0001E010  00000000 00000000 00000000 00000000  ................
PPC1-Bug>

Example 2:

PPC1-Bug>MW 1E000 77;B <Return>
Effective address: 0001E000
Effective data   : 77
PPC1-Bug>

PPC1-Bug>MW 1E000 <Return>
0001E000  77AA55AA 00000000 00000000 00000000  w.U.............
0001E010  00000000 00000000 00000000 00000000  ................
PPC1-Bug>

B Byte

H Half-word

W Word



MW - Memory Write

3-137

3

Example 3:

PPC1-Bug>MW 1E002 33CC;H <Return>
Effective address: 0001E002
Effective data   : 33CC
PPC1-Bug>

PPC1-Bug>MD 1E000 <Return>
0001E000  77AA33CC 00000000 00000000 00000000  w.3.............
0001E010  00000000 00000000 00000000 00000000  ................
PPC1-Bug>



NAB - Network Auto Boot

3-138

3

NAB - Network Auto Boot

Command Input

NAB

Description

The NAB command re-invokes the network auto boot feature. This 
command simply invokes the NBO command with the specified 
parameters saved in NVRAM for the specified network interface. 
This invocation occurs at system start-up and can be specified at 
either power-up or at any reset condition.

Refer to NBO - Network Boot Operating System on page 3-142.

The clock must be running in order for this command to work 
properly. Use TIME ;L to see if the clock is running. Use the SET 
command to start and initialize the clock.



NAP - NAP MPU

3-139

3

NAP - NAP MPU

Note This command is for multi-processor boards only.

Command Input

NAP MPU#

Options

None

Description

The NAP command puts an idling CPU into a tight cached loop 
from which it will never exit. The napping CPU will not intrude 
onto the bus. This command is useful during performance analysis 
when it is desirable to allow one single CPU access to the bus 
without having to share bus bandwidth with another CPU.

To cause a processor to leave the napping state, a board reset must 
be issued.

This command will issue an error message if the system does not 
contain two processors.

Example: To ÔnapÕ processor 1, do:

PPC1-Bug>NAP 1<Return>
PPC1-Bug>



NBH - Network Boot Operating System, Halt

3-140

3

NBH - Network Boot Operating System, Halt

Command Input

NBH [ControllerLUN] [DeviceLUN] [ClientIPAddress] [ServerIPAddress] [String] 

Arguments

Description

The NBH command loads an operating system or control program 
from the server into memory, and halts. This command functions in 
exactly the same way as the NBO command, except that control is 
not given to the loaded program. 

ControllerLUN Logical Unit Number (LUN) of the controller to 
which the following device is attached.
It defaults to LUN 0. 

DeviceLUN LUN of the device to boot from.
It defaults to LUN 0. 

ClientIPAddress Internet Protocol Address of the client, basically 
my/source IP address. It defaults to an IP address of 
0 (refer to the NIOT command). 

ServerIPAddress Internet Protocol Address of the server, basically the 
destination IP address. 
It defaults to an IP address of 0 (refer to the NIOT 
command). 

String A character string.
Up to 2 strings may be speciÞed, usually the name of 
the Þle to boot and an optional string (string 2). 
String 2, if speciÞed, is passed to the booted Þle. To 
specify string 2, a delimiter must be used to 
differentiate from string 1 (boot Þlename). Both 
character strings default to a null character string 
(refer to the NIOT command). 



NBH - Network Boot Operating System, Halt

3-141

3

After the registers are initialized, control is returned to the 
debugger monitor and the prompt reappears on the terminal 
screen. Because control is retained by the debugger, all of the 
debugger's facilities are available for debugging the loaded 
program if necessary. 

The device and controller configuration parameters used when 
NBH is initiated can be examined via the NIOT command.

Note that certain arguments will be passed (through MPU 
registers) to the loaded program.

Refer to NBO - Network Boot Operating System on page 3-142 for 
examples and further explanation. 

Note The clock must be running in order for this command 
to work properly. Use TIME ;L to see if the clock is 
running. Use the SET command to start and initialize 
the clock.



NBO - Network Boot Operating System

3-142

3

NBO - Network Boot Operating System

Command Input

NBO [ControllerLUN] [DeviceLUN] [ClientIPAddress] [ServerIPAddress] [String]

Arguments

Description

The NBO command loads an operating system or control program 
from the server into memory and gives control to it (execute). The 
load and execution address of the file is specified via the 
configuration parameters. The device and controller configuration 
parameters used when NBO is initiated can be examined via the 
Network I/O Teach (NIOT) command. 

ControllerLUN Logical Unit Number (LUN) of the controller to 
which the following device is attached. 
It defaults to LUN 0. 

DeviceLUN Logical Unit Number (LUN) of the device from 
which to boot. 
It defaults to LUN 0. 

ClientIPAddress Internet Protocol Address of the client, basically 
my/source IP address. It defaults to an IP address of 
0 (refer to the NIOT command). 

ServerIPAddress Internet Protocol Address of the server, basically the 
destination IP address. 
It defaults to an IP address of 0 (refer to the NIOT 
command). 

String String of characters. 
Up to 2 strings may be speciÞed, usually the name of 
the Þle to boot and a optional string (string 2). String 
2, if speciÞed, is passed to the booted Þle. To specify 
string 2 a delimiter must be used to differentiate 
from string 1 (boot Þlename). Both character strings 
default to a null character string (refer to the NIOT 
command). 



NBO - Network Boot Operating System

3-143

3

NBO uses primarily the BOOTP, RARP, and TFTP protocols to load 
the boot file. Refer to the DARPA Internet Request for Comments 
RFC-951, RFC-903, and RFC-783, respectively, for the description of 
these protocols. You may skip the BOOTP phase (address 
determination and bootfile selection) by specifying the IP addresses 
(server and client) and the boot filename; the booting process 
would then start with the TFTP phase (file transfer) of the boot 
sequence.

When the IP addresses are 0 they always force a BOOTP/RARP 
phase to occur first. If all (client and server) of the IP addresses are 
known/specified, the TFTP phase occurs first. If this phase fails in 
loading the boot file, the BOOTP/RARP phase is initiated prior to 
subsequent TFTP phase. If the filename is not specified, this also 
forces a BOOTP/RARP phase to occur first. Note that the defaults 
specified by the command always initiates a BOOTP/RARP phase. 
In any case the booting (server) IP address is displayed as well as 
that of any failing IP address. 

Once the IP addresses are obtained from the BOOTP server (or the 
configuration parameters, if specified), the IP addresses are 
checked to see if the server and the client are resident on the same 
network. If they are not, the gateway IP address is used as the 
intermediate server to perform the TFTP phase with. 

If the server has only RARP capability, you need to specify the 
name of the boot file, either by the command line or the 
configuration parameters (refer to the NIOT command). 

Prior to the TFTP phase an ARP request is transmitted for the 
hardware (Ethernet) address of the server. 

At selected times (when prompted or a time-out condition exists), 
the booting process can be aborted by pressing the BREAK key on 
the console keyboard or by pressing the abort switch on the front 
panel. 



NBO - Network Boot Operating System

3-144

3

Note that certain arguments are passed (through MPU registers) to 
the loaded program. The following is a list of the MPU registers and 
their contents:

Invoke the NIOT command with the H option to see which LUNs 
are available. Refer to Appendix G for a list of LUNs.

NBO uses primarily the BOOTP and TFTP protocols to load the 
boot file. Refer to the DARPA Internet Request for Comments RFC-
951 and RFC-783, respectively, for the description of these 
protocols. You may skip the BOOTP phase (address determination 
and bootfile selection) by specifying the IP addresses (server and 
client) and the boot filename; the booting process would then start 
with the TFTP phase (file transfer) of the boot sequence. 

You may invoke NBO without any arguments. Depending on the 
interface's configuration parameters, the display of various IP 
addresses and the boot file name signifies that the BOOTP phase 
was successful. The booting process halts and waits about 5 
seconds for you to abort (by pressing the BREAK key).

If you do not abort, a <CR><LF> sequence is printed to signify the 
entrance into the TFTP phase of the boot process. Once this phase is 
started, you cannot abort unless a time-out condition arises. When 

R3 Controller Logical Unit Number (CLUN) of the boot

R4 Device Logical Unit Number (DLUN) of the boot

R5 System Call Support available

R6 Base address of Network Controller Device

R7 Execution Address of Load Program

R8 Address to IPAs (Client, Server, Gateway)

R9 Pointer to Filename String (i.e., string start)

R10 Pointer to Filename String (i.e., string end + 1)

R11 Pointer to Argument String (i.e., string start)

R12 Pointer to Argument String (i.e., string end + 1)



NBO - Network Boot Operating System

3-145

3

the boot file is loaded into the user memory, the statistics of the 
TFTP phase (file transfer) are displayed. The boot process continues 
with loading of the MPU registers and execution of the loaded file. 

Whenever an error occurs, the booting process is terminated and 
the error code is displayed. The error codes are listed in Appendix 
H.

The clock must be running in order for this command to work 
properly. Use TIME ;L to see if the clock is running. Use the SET 
command to start and initialize the clock.

Examples

Example 1: Boot from controller LUN 0, device LUN 0, with default 
client address of 255.255.17.34, server IP address of 255.255.17.21, 
and bootfile /tftpboot/load.

PPC1-Bug>NBO 0 0 255.255.17.34 255.255.17.21 /ot/load <Return>
     ...

Example 2: Boot from controller LUN 0, device LUN 0, with default 
client IP address, server IP address 255.255.17.21, and the default 
bootfile.

PPC1-Bug>NBO 0 0,,255.255.17.21 <Return>
      ...

Example 3: Invoke NBO with no arguments:

PPC1-Bug>NBO <Return>
Network Booting from: AM79c970, Controller 0, Device 0
Loading: Operating System
Client IP Address          = 255.255.24.10
Server IP Address          = 255.255.11.81
Gateway IP Address         = 255.255.24.254
Subnet IP Address Mask     = 255.255.24.254
Boot File Name        = /riscy/fwdb/NETLOADER/nbldexp/M88K/nbld.out
Argument File Name         = 

Network Boot File load in progress... To abort hit <BREAK>

Bytes Received =&8912, Bytes Loaded =&8912
Bytes/Second =&2970, Elapsed Time =3 Second(s)
... 



NIOC - Network I/O Control

3-146

3

NIOC - Network I/O Control

Command Input

NIOC 

Description

The NIOC command sends command packets directly to the 
Ethernet network interface driver. The packet to be sent must 
already reside in memory and must follow the packet protocol of 
the interface. This command facilitates in the transmission and 
reception of raw packets (command identifiers 2 and 3, listed 
below), as well as some control (command identifiers 0, 1, 4, and 5, 
listed below). 

The command packet specifies the network interface (CLUN/ 
DLUN), command type (identifier), the starting memory address 
(data transfers), and the number of bytes to transfer (data transfers). 
The command types are listed in this header file as well.

The command types (identifiers) are as follows:

The initialization (type 0) of the device/channel/node must always 
be performed first. If you have booted or initiated some other 
network I/O command, the initialization would already have been 
done. 

The flush receiver and receive buffer (type 4) would be used if, for 
example, the current receive data is no longer needed, or to provide 
a known buffer state prior to initiating data transfers. 

0 Initialize device/channel/node

1 Get hardware (Ethernet) address (network node)

2 Transmit (put) data packet

3 Receive (get) data packet

4 Flush receiver and receive buffers

5 Reset device/channel/node



NIOC - Network I/O Control

3-147

3

The reset device/channel/node (type 5) would be used if another 
operating system (node driver) needs to be control of the 
device/channel/node. Basically, put the device/channel/ node to 
a known state. 

Whenever an error occurs, the initiated I/O control process is 
terminated and the appropriate error code is displayed. The error 
codes are listed in Appendix H.

When invoked, NIOC enters an interactive mode which prompts 
for information required to perform the command. You may 
change the displayed value by typing a new value, and the Return 
key. To leave the field unaltered, press the Return key without 
typing a new value.

You may also enter a special character, either at the prompt or after 
typing new data, for scrolling through the registers. The special 
characters are:

The clock must be running in order for this command to work 
properly. Use TIME ;L to see if the clock is running. Use the SET 
command to start and initialize the clock.

V or v Open the next Þeld. This is the default, and remains in 
effect until changed by entering one of the other special 
characters.

^ Back up and open the previous Þeld

= Re-open the same Þeld

. Terminate the NIOC command, and return control to the 
debugger



NIOC - Network I/O Control

3-148

3

Examples

Example 1: Initialize (type 0) the device/channel/node.

PPC1-Bug>NIOC <Return>
Controller LUN                  =00?  <Return>
Device LUN                      =00?  <Return>
Packet Address                  =00006454?  <Return>
00006454 0000 0000 0000 0000 0000 0000 0000 0000      ................
00006464 0000 0000                                    ....
Send Packet (Y/N)                =N?  Y <Return>
PPC1-Bug>

Example 2: Retrieve the hardware address of the specified network 
interface (type 1). Note that the transfer byte count is set to zero; this 
specifies all possible data associated with the address retrieval. This 
also holds true for the reception of data packets.

PPC1-Bug>NIOC <Return>
Controller LUN                  =00?  <Return>
Device LUN                      =00?  <Return>
Packet Address                  =00006454?  <Return>
00006454 0000 0000 0000 0001 0000 E000 0000 0000        ................
00006464 0000 0000        ....
Send Packet (Y/N)                =N?  Y <Return>
PPC1-Bug>

View the address data retrieval.

PPC1-Bug>MD E000:6;B <Return>
0000E000 08 00 3E 21 0F CC        ..>!..
PPC1-Bug> 

Example 3: View the packet to transmit, ARP Request.

This example illustrates the transmission (type 2) of a packet (ARP 
Request). The transfer byte count specifies how many bytes are to 
be transmitted. If the transfer byte count is below the minimum 
transmit byte count for the specified interface, the driver rounds to 
the minimum and places it into your packet. However, the specified 
network interface driver does not round down to the maximum if 
the transfer byte count exceeds the maximum. You must ensure 
packet integrity (e.g., source and destination addresses) for the 
specified network interface; the driver does not insert any data. 



NIOC - Network I/O Control

3-149

3

PPC1-Bug>MD E000:&21 <Return>
0000E000 FFFF FFFF FFFF 0800 3E21 0FCC 0806 0001        ........>!......
0000E010 0800 0604 0001 0800 3E21 0FCC ffff 0B2C        ........>!.....,
0000E020 FFFF FFFF FFFF 8610 1112        ..........
PPC1-Bug>

PPC1-Bug>NIOC <Return>
Controller LUN                  =00?  <Return>
Device LUN                      =00?  <Return>
Packet Address                  =00006454?  <Return>
00006454 0000 0000 0000 0002 0000 E000 0000 002A        ................
00006464 0000 0000        ....
Send Packet (Y/N)   =N?  Y <Return>
PPC1-Bug>

Example 4: 

This example illustrates the reception of data (type 3). The driver 
does not block (waits for incoming data). The control/status word 
field signifies whether or not data has been received. Currently 
only one status bit is specified, bit 16, the receipt of data. This bit is 
cleared if no data is present. It is set if receive data is present. The 
transfer byte count is also set to the number of bytes associated with 
this receive data packet. This field is only valid when bit 16 is set.

PPC1-Bug>NIOC <Return>
Controller LUN                  =00?  <Return>
Device LUN                      =00?  <Return>
Packet Address                  =00006454?  <Return>
00006454 0000 0000 0000 0003 0000 E000 0000 0000        ................
00006464 0000 0000                                      ....
Send Packet (Y/N)               =N?  Y <Return>
PPC1-Bug>

View the address data retrieval.

PPC1-Bug>NIOC <Return>
Controller LUN                  =00?  <Return>
Device LUN                      =00?  <Return>
Packet Address                  =00006454?  <Return>
00006454 0000 0000 0000 0003 0000 E000 0000 0222        ................ 
00006464 0001 0000                                      .... 
Send Packet (Y/N)               =N?  N <Return>
PPC1-Bug> 



NIOC - Network I/O Control

3-150

3

View the address data retrieval.

PPC1-Bug>MD E000:222;B <Return>
0000E000 FF FF FF FF FF FF 08 00 3E 20 C8 0A 08 00 45 00    .......> ....E.
0000E010 02 14 00 00 00 00 40 11 25 5E 90 BF 18 FE 90 BF    ......@.% .̂.....
0000E020 18 FF 02 08 02 08 02 00 55 34 02 01 00 00 00 02    ........U4......
0000E030 00 00 C0 13 01 00 00 00 00 00 00 00 00 00 00 00    ................
0000E040 00 03 00 02 00 00 90 BF 82 00 00 00 00 00 00 00    ................
0000E050 00 00 00 00 00 03 00 02 00 00 C0 13 02 00 00 00    ................
0000E060 00 00 00 00 00 00 00 00 00 04 00 02 00 00 90 BF    ................
0000E070 63 00 00 00 00 00 00 00 00 00 00 00 00 02 00 02    c...............
0000E080 00 00 90 BF 83 00 00 00 00 00 00 00 00 00 00 00    ................
0000E090 00 04 00 02 00 00 90 BF 03 00 00 00 00 00 00 00    ................
0000E0A0 00 00 00 00 00 03 00 02 00 00 90 BF 84 00 00 00    ................
0000E0B0 00 00 00 00 00 00 00 00 00 04 00 02 00 00 90 BF    ................
0000E0C0 04 00 00 00 00 00 00 00 00 00 00 00 00 03 00 02    ................
0000E0D0 00 00 90 BF 85 00 00 00 00 00 00 00 00 00 00 00    ................
0000E0E0 00 04 00 02 00 00 90 BF 06 00 00 00 00 00 00 00    ................
0000E0F0 00 00 00 00 00 03 00 02 00 00 90 BF 86 00 00 00    ................
0000E100 00 00 00 00 00 00 00 00 00 04 00 02 00 00 90 BF    ................
0000E110 E6 00 00 00 00 00 00 00 00 00 00 00 00 02 00 02    ................
0000E120 00 00 90 BF 87 00 00 00 00 00 00 00 00 00 00 00    ................
0000E130 00 04 00 02 00 00 90 BF C7 00 00 00 00 00 00 00    ................
0000E140 00 00 00 00 00 02 00 02 00 00 90 BF 88 00 00 00    ................
0000E150 00 00 00 00 00 00 00 00 00 04 00 02 00 00 90 BF    ................
0000E160 28 00 00 00 00 00 00 00 00 00 00 00 00 02 00 02    (...............
0000E170 00 00 DE 01 08 00 00 00 00 00 00 00 00 00 00 00    ................
0000E180 00 02 00 02 00 00 90 BF 08 00 00 00 00 00 00 00    ................
0000E190 00 00 00 00 00 04 00 02 00 00 90 BF E8 00 00 00    ................
0000E1A0 00 00 00 00 00 00 00 00 00 02 00 02 00 00 90 BF    ................
0000E1B0 89 00 00 00 00 00 00 00 00 00 00 00 00 04 00 02    ................
0000E1C0 00 00 90 BF 29 00 00 00 00 00 00 00 00 00 00 00    ....)...........
0000E1D0 00 04 00 02 00 00 90 BF AA 00 00 00 00 00 00 00    ................
0000E1E0 00 00 00 00 00 04 00 02 00 00 90 BF 8A 00 00 00    ................
0000E1F0 00 00 00 00 00 00 00 00 00 04 00 02 00 00 90 BF    ................
0000E200 0A 00 00 00 00 00 00 00 00 00 00 00 00 03 00 02    ................
0000E210 00 00 90 BF AB 00 00 00 00 00 00 00 00 00 00 00    ................
0000E220 00 04                                              ..

Example 5: Flush the receiver and receive buffers (type 4).

PPC1-Bug>NIOC <Return>
Controller LUN                  =00? <Return>
Device LUN                      =00? <Return>
Packet Address                  =00006454? <Return>
00006454 0000 0000 0000 0004 0000 0000 0000 0000        ................
00006464 0000 0000                                      ....
Send Packet (Y/N)               =N? Y <Return>
PPC1-Bug>



NIOC - Network I/O Control

3-151

3

This entry point is useful when the interface has not been accessed 
for some time and you do not want receive data. The Network I/O 
commands (i.e., NAB, NBH, NBO, NIOP, and NPING) use this 
feature prior to any Network I/O transactions.



NIOP - Network I/O Physical

3-152

3

NIOP - Network I/O Physical

Command Input

NIOP

Description

The NIOP command allows you to get files from the supported 
Ethernet network interfaces and put files to the supported Ethernet 
network interfaces. When invoked, this command goes into an 
interactive mode, prompting you for all parameters necessary to 
carry out the command. This command basically uses the TFTP 
protocol to perform the file transfer. 

The IP addresses for the TFTP session are obtained from the 
configuration parameters. The IP addresses are checked to see if the 
server and the client are resident on the same network. If they are 
not, the gateway IP address is used as the intermediate server to 
perform the TFTP session with. The filename character string has a 
maximum length of 64 bytes. 

Whenever an error occurs, the TFTP session is terminated and the 
error code is displayed. The error codes are listed in Appendix H.

Upon successful transfer of the specified file, the TFTP session 
statistics are displayed.

When invoked, this command goes into an interactive mode, which 
prompts for information required to perform the command. You 
may change the displayed value by typing a new value, and the 
Return key. To leave the field unaltered, press the Return key 
without typing a new value.



NIOP - Network I/O Physical

3-153

3

You may also enter a special character, either at the prompt or after 
typing new data, for scrolling through the fields. The special 
characters are:

The NIOP command utilizes the necessary configuration 
parameters to perform the TFTP file transfer. Prompts appear for 
entering the parameters. Refer to NIOT - Network I/O Teach 
(Configuration) on page 3-156 for a description of the parameters.

Note that winding (indexing) into a file is possible on a read (get), 
there is a drawback in this feature due to the nature of TFTP, the 
entire file is transferred across the network. But only the desired 
section of the file is written to the user memory. 

Refer to the DARPA Internet Request for Comments RFC-783 for 
the description of the TFTP protocol. Prior to the TFTP session an 
ARP request is transmitted for the hardware (Ethernet) address of 
the server. 

At time-out conditions the file transfer process can be aborted by 
pressing the BREAK key on the console keyboard or by pressing the 
abort switch on the front panel. 

Note The clock must be running in order for this command 
to work properly. Use TIME ;L to see if the clock is 
running. Use the SET command to start and initialize 
the clock.

The field prompts are shown below.

V or v Open the next Þeld. This is the default, and remains in 
effect until changed by entering one of the other special 
characters.

^ Back up and open the previous Þeld

= Re-open the same Þeld

. Terminate the NIOP command, and return control to the 
debugger



NIOP - Network I/O Physical

3-154

3

Controller LUN =00?

The Logical Unit Number (LUN) of the controller to access

Device LUN =00?

The LUN of the device to access

Get/Put        =G?

File Name      =?

The name of the Þle to load/store. On a write the Þle must exist 
on the host system and also be writable (write permission). The 
Þlename string must be null terminated. The maximum length 
of the string is 64 bytes inclusive of the null terminator. 

Note The path of the file name to load/store must point to a 
tftp boot area on the host system. See your host system 
administrator for details on configuring a tftp boot 
area.

Memory Address =00004000?

Address of buffer in memory. On a read, data is read to (received to) 
starting at this address. On a write, data is written (sent) starting at 
this address. 

Length         =00000001?

The number of bytes from the data transfer address to transfer. 
A length of 0 speciÞes to transfer the entire Þle on a read. On a 
write the length must be set to the number of bytes to transfer.

Byte Offset    =00000001?

The offset into the Þle on a read. This permits users to wind into 
a Þle. 

G Read/get from host
P Write/put to host



NIOP - Network I/O Physical

3-155

3

Example

Read a file into memory.

This example illustrates the reading (or getting) of the file 
/tftboot/motorola.bin from the specified server (refer to the NIOT 
command) into memory at address 00010000. The length field of 0 
signifies to load the entire file. The load (get) of a file can be 
truncated to a desired length by specifying the desired length (non-
zero). The byte offset field can be used to wind (index) into a file 
(only used on file reads, gets).

PPC1-Bug>NIOP <Return>
Controller LUN   =00? <Return>
Device LUN       =00?  <Return>
Get/Put          =G?  <Return>
File Name        =? /tftboot/motorola.bin <Return>
Memory Address   =0000E000? 10000  <Return>
Length           =00000000?  <Return>
Byte Offset      =00000000?  <Return>
Bytes Received =&8912, Bytes Loaded =&8912  <Return>
Bytes/Second =&8912, Elapsed Time =1 Second(s)  <Return>
PPC1-Bug>



NIOT - Network I/O Teach (Configuration)

3-156

3

NIOT - Network I/O Teach (Configuration)

Command Input

NIOT [;[A|H|D]] 

Options

Description

The NIOT command allows you to set-up (ÒteachÓ) a new network 
configuration on the debugger for use by the .NETxxx system calls. 
NIOT lets you modify the controller and device descriptor tables 
used by the .NETxxx system calls for network access. Note that 
because the debugger commands that access the network use the 
same interface as the system calls, changes in the descriptor tables 
affect all those commands. These commands include NIOP, NBO, 
NBH, and also any user program that uses the .NETxxx system 
calls.

Each controller LUN and device LUN combination has its own 
descriptor table which houses configuration and run-time 
parameters. If the controller and device LUNs are used for Network 
Automatic Boot, any changes made by this command are saved in 
NVRAM.

A Display the Network Controllers/Nodes that are 
supported by this version of the firmware. Each PCI 
controller is only listed once.

H Display all Network Controllers/Nodes that are 
present in the system. The display also includes the 
Protocol (Internet) and Hardware (Ethernet) 
addresses.

D List Devices while probing



NIOT - Network I/O Teach (Configuration)

3-157

3

Each mass storage boot device and network interface boot device is 
identified by a device name. Each device type that the product 
supports is contained/listed within device probe tables. These 
tables are modified to contain the associative device name.

At probe time, the probed device's name is copied into the dynamic 
device configuration tables housed within in NVRAM. This will 
only be done, of course, if the device is present. The user may view 
the system's device names by the performing the following 
operations.

For network interface devices, the D option allows users to display 
the device names of the attached devices. These device names are 
per the IBM firmware and the IBM AIX naming conventions.

When invoked, this command goes into an interactive mode, which 
prompts for information required to perform the command. You 
may change the displayed value by typing a new value, and the 
Return key. To leave the field unaltered, press the Return key 
without typing a new value.

You may also enter a special character, either at the prompt or after 
typing new data, for scrolling through the fields. The special 
characters are:

You will be prompted to save changes.

The field prompts are shown below. A retry value of 0 is interpreted 
as no maximum, always retry.

V or v Open the next Þeld. This is the default, and remains in 
effect until changed by entering one of the other special 
characters.

^ Back up and open the previous Þeld

= Re-open the same Þeld

. Terminate the NIOT command, and return control to the 
debugger



NIOT - Network I/O Teach (Configuration)

3-158

3

Node Control Memory Address=FFE10000?

The starting address of the necessary memory needed for the 
transmit and receive buffers. 256KB are needed for the Ethernet 
driver (transmit/receive buffers).

As of version 1.8 of PPC1Bug, the node control memory address 
is dynamically calculated. The saved version(i.e., NVRAM) is 
now ignored.

Client IP Address        =255.255.255.255?

The IP address of the client. The firmware is considered the 
client. 

Server IP Address        =255.255.255.255?

The IP address of the server. The server is the host system from 
which the specified file is retrieved. 

Subnet IP Address Mask   =255.255.255.0?

The subnet IP address mask. This mask is used to determine if 
the server and client are resident on the same network. If they 
are not, the gateway IP address is used as the intermediate 
target (server). 

Broadcast IP Address     =255.255.255.255?

The broadcast IP address that the firmware utilizes when a IP 
broadcast needs to be performed. 

Gateway IP Address       =255.255.255.255?

The gateway IP address. The gateway IP address would be 
necessary if the server and the client do not reside on the same 
network. The gateway IP address would be used as the 
intermediate target (server). 



NIOT - Network I/O Teach (Configuration)

3-159

3

Boot File Name (“NULL” for None)       =?

The name of the boot file to load. Once the file is loaded, control 
is passed to the loaded file (program). To specify a null 
filename, the string ÒNULLÓ must be used; this resets the 
filename buffer to a null character string. 

Argument File Name (“NULL” for None)   =?

The name of the argument file. This file may be used by the 
booted file (program) for an additional file load. To specify a 
null filename, the string ÒNULLÓ must be used; this resets the 
filename buffer to a null character string. 

Boot File Load Address     =001F0000?
Boot File Execution Address=001F0000

The load and execution addresses of the boot file. 

Boot File Execution Delay  =00000000?

The delay, in seconds, before control is passed to the loaded file 
(program). 

Boot File Length           =00000000?

The number of bytes from the data transfer address to transfer. 
A length of 0 speciÞes to transfer the entire Þle on a read. On a 
write the length must be set to the number of bytes to transfer.

Boot File Byte Offset      =00000000?

The offset into the Þle on a read. This permits users to wind into 
a Þle. 

BOOTP/RARP Request Retry   =00?
TFTP/ARP Request Retry     =00?

The number of retries that should be attempted prior to giving 
up. A retry value of zero specifies always to retry (not give up). 



NIOT - Network I/O Teach (Configuration)

3-160

3

Trace Character Buffer Address=00000000?

The starting address of memory in which to place the trace 
characters. The receive/transmit packet tracing are disabled by 
default (value of 0). Any non-zero value enables tracing. Tracing 
would only be used in a debug environment and normally 
should be disabled. Care should be exercised when enabling 
this feature; you need to ensure that adequate memory exists. 
The following characters are deÞned for tracing:

? Unknown
& Unsupported Ethernet Type
* Unsupported IP Type
% Unsupported UDP Type
$ Unsupported BOOTP Type
[ BOOTP Request
] BOOTP Reply
+ Unsupported ARP Type
( ARP Request
) ARP Reply
- Unsupported RARP Type
{ RARP Request
} RARP Reply
^ Unsupported TFTP Type
\ TFTP Read Request
/ TFTP Write Request
< TFTP Acknowledgment
> TFTP Data
| TFTP Error
, Unsupported ICMP Type
: ICMP Echo Request
; ICMP Echo Reply



NIOT - Network I/O Teach (Configuration)

3-161

3

BOOTP/RARP Request Control: Always/When-Needed (A/W)  =W

BOOTP/RARP Reply Update Control: Yes/No (Y/N)         =Y

This parameter specifies the updating of the configuration 
parameters following a BOOTP/RARP reply. Receipt of a 
BOOTP/RARP reply would only be in lieu of a request being 
sent.

Examples

Example 1: Invoke NIOT with no options. This shows the 
interactive session for the various configuration parameters. 

PPC1-Bug>NIOT <Return>
Controller LUN          =00? <Return>
Device LUN              =00? <Return>
Node Control Memory Address =FFE10000? <Return>
Client IP Address              =255.255.255.255? <Return>
Server IP Address              =255.255.255.255? <Return>
Subnet IP Address Mask         =255.255.255.0? <Return>
Broadcast IP Address           =255.255.255.255? <Return>
Gateway IP Address             =255.255.255.255? <Return>
Boot File Name (“NULL” for None)            =? <Return>
Argument File Name (“NULL” for None)        =? <Return>
Boot File Load Address         =001F0000? <Return>
Boot File Execution Address    =001F0000? <Return>
Boot File Execution Delay      =00000000? <Return>
Boot File Length               =00000000? <Return>
Boot File Byte Offset          =00000000? <Return>
BOOTP/RARP Request Retry       =00? <Return>
TFTP/ARP Request Retry         =00? <Return>
Trace Character Buffer Address =00000000? <Return>
BOOTP/RARP Request Control: Always/When-Needed (A/W) =W? <Return>
BOOTP/RARP Reply Update Control: Yes/No (Y/N)        =Y? <Return>
PPC1-Bug>

 A BOOTP/RARP request is always sent, and the accompanying 
reply expected

W BOOTP/RARP request is sent if needed (i.e., IP addresses of 0, 
null boot Þle name)



NIOT - Network I/O Teach (Configuration)

3-162

3

Example 2: Display the network controllers/nodes that are present 
in the system.

PPC1-Bug>NIOT;H <Return>
Network Controllers/Nodes Available
CLUN  DLUN  Name      Address    IP-Address/H-Address
0     0     DEC21140  $80804000  255.255.24.10/08003E210FCC
PPC1-Bug>

Example 3: Display the Network Controllers/Nodes that are 
supported by PPCBug.

PPC1-Bug>niot;a <Return>
Network Controllers/Nodes Supported
CLUN  DLUN  Name      Address
   X     0  DEC21040  Any PCI
   X     0  DEC21140  Any PCI
   X     0  AM79C970  Any PCI
PPC1-Bug>

!
Caution

If you use the NIOT debugger command, the network interface 
configuration parameters need to be saved/retained in the 
NVRAM, somewhere in the offset range $00000000 through 
$00000FFF. The NIOT parameters do not exceed 128 bytes in 
size. The location for these parameters is determined by setting 
the ENV pointer Network Auto Boot Configuration Parameters 

Offset (NVRAM) . If you have used the exact same space for your 
own program information or commands, they will be 
overwritten and lost.

You can relocate the network interface conÞguration 
parameters in this space by using the ENV command to change 
the Network Auto Boot Configuration Parameters Offset (NVRAM)  
from its default of FFFFFFFF to the value you need so as to be 
clear of your data within NVRAM.



3

NPING - Network Ping

3-163

3Debugger Commands

NPING - Network Ping

Command Input

NPING ControllerLUN DeviceLUN SourceIP DestinationIP [NPackets]

Arguments

Description

The NPING command probes the network. This probing facilitates 
the testing, measurement, and management of the network. 
NPING utilizes the ICMP protocol's mandatory ECHO_REQUEST 
datagram to elicit an ICMP ECHO_RESPONSE from a host or 
gateway. 

The packet size has a fixed length of 128 bytes.

At any time an error occurs, the NPING session is terminated and 
the appropriate error code is displayed. The error codes are listed 
in Appendix H. The receive packet is checked for checksum and 
data integrity. 

Prior to the NPING session an ARP request is transmitted for the 
hardware (Ethernet) address of the destination. The source and 
destination IP addresses must always be specified. No gateway IP 
address is used. 

Refer to the DARPA Internet Request for Comments RFC-792 for 
the description of the ICMP protocol. 

ControllerLUN Logical Unit Number (LUN) of the controller to which 
the device is attached. 

DeviceLUN Logical Unit Number (LUN) of the device.

SourceIP Internet Protocol Address of the Source (initiator, 
ECHO_REQUEST).

DestinationIP Internet Protocol Address of the Destination (target, 
ECHO_RESPONSE). 

NPackets Number of packets to send. It defaults to inÞnity. 



NPING - Network Ping

3-164

3

If the destination does not respond within 10 seconds, the 
command continues on with the next transmission. Between each 
successful transmit/receive packet there is a one second delay; this 
is done so as not to inundate the network. 

If the number of packets is not specified on the command line, the 
command will indefinitely transmit/receive packets. You must 
press the BREAK key to abort the session.

The clock must be running in order for this command to work 
properly. Use TIME ;L to see if the clock is running. Use the SET 
command to start and initialize the clock.

Examples

Example 1: Transmit/receive $10 (16) ping packets. Once the ping 
session is complete, the command displays the statistics of the 
session.

PPC1-Bug>NPING 0 0 255.255.24.10 255.255.24.254 10 <Return>
Source IP Address                               = 255.255.24.10
Destination IP Address                          = 255.255.24.254
Number of Packets Transmitted =16, Packets Lost =0, Packet Size =128
PPC1-Bug>

Example 2: This example illustrates the indefinite transmission/ 
reception of packets. 

PPC1-Bug>NPING 0 0 255.255.24.10 255.255.24.254 <Return>
Source IP Address                               = 255.255.24.10
Destination IP Address                          = 255.255.24.254
(<BREAK> key pressed)
Number of Packets Transmitted =1955, Packets Lost =0, Packet Size =128
PPC1-Bug>



OF - Offset Registers Display/Modify

3-165

3

OF - Offset Registers Display/Modify

Command Input

OF [Zn[;A] ]

Description

The OF command allows you to access and change pseudo-
registers called offset registers. These registers are used to simplify 
the debugging of relocatable and position-independent modules.

There are eight offset registers Z0-Z7, but only Z0-Z6 can be 
changed. Z7 always has both base and top addresses set to 0. This 
allows the automatic register function to be effectively disabled by 
setting Z7 as the automatic register.

Each offset register has two values: base and top. The base address 
is the absolute least address that is used for the range declared by 
the offset register. The top address is the absolute greatest address 
that is used.

OF without the argument or option displays all offset registers. An 
asterisk indicates which register is the automatic register.

The argument Zn is the register that is displayed or modified 
register.

The option A sets register Zn as the automatic register. The automatic 
register is one that is automatically added to each absolute address 
argument of every command unless an offset register is explicitly 
added. An asterisk indicates which register is the automatic 
register.

When invoked with the Zn argument, this command goes into an 
interactive mode, prompting you for information. You may change 
the displayed register by typing a new value, followed by pressing 
the Return key. To leave the register unaltered, press the Return key 
without typing a new value.



OF - Offset Registers Display/Modify

3-166

3

Enter the following parameters:

[base_address [top_address] ]

or

[base_address [: byte_count] ]

The top_address must equal or exceed the base_address. Wrap-around 
is not permitted. The default for byte_count is 1MB.

You may also enter a special character, either at the prompt or after 
typing new data, for scrolling through register Zn. The special 
characters are:

Offset register rules:

❏ At power-up and cold start reset, Z7 is the automatic register.

❏ At power-up and cold start reset, all offset registers have both 
base and top addresses preset to 0. This effectively disables 
them.

❏ Z7 always has both base and top addresses set to 0; it cannot 
be changed.

❏ Any offset register can be set as the automatic register.

❏ The automatic register is always added to every absolute 
address argument of every debugger command where there 
is not an offset register explicitly called out.

❏ There is always an automatic register. A convenient way to 
disable the effect of the automatic register is by setting Z7 as 
the automatic register. Note that this is the default condition.

V or v Open the next register. This is the default, and remains in 
effect until changed by entering one of the other special 
characters.

^ Back up and open the previous register

= Re-open the same register

. Terminate the OF command, and return control to the 
debugger



OF - Offset Registers Display/Modify

3-167

3

Examples

Example 1: Display offset registers.

PPC1-Bug>OF <Return>
Z0 =00000000 00000000  Z1 = 00000000 00000000
Z2 =00000000 00000000  Z3 = 00000000 00000000
Z4 =00000000 00000000  Z5 = 00000000 00000000
Z6 =00000000 00000000  Z7*= 00000000 00000000
PPC1-Bug>

Example 2: Modify some offset registers.

PPC1-Bug>OF Z0 <Return>
Z0 =00000000 00000000? 20000 200FF <Return>
Z1 =00000000 00000000? 25000:200^ <Return>
Z0 =00020000 000200FF? . <Return>
PPC1-Bug>

Look at location $20000.

PPC1-Bug>M 20000;DI <Return>
00000+Z0 3C600004  ADDIS       R3,R0,$4? . <Return>
PPC1-Bug>

PPC1-Bug>M Z0;DI <Return>
00000+Z0 3C600004  ADDIS       R3,R0,$4? . <Return>
PPC1-Bug>

Example 3: Set Z0 as the automatic register.

PPC1-Bug>OF Z0;A <Return>
Z0*=00020000 000200FF? . <Return>
PPC1-Bug>

To look at location $20000

PPC1-Bug>M 0;DI <Return>
00000+Z0 3C600004  ADDIS       R3,R0,$4? . <Return>
PPC1-Bug>

To look at location 0, override the automatic offset.

PPC1-Bug>M 0+Z7;DI <Return>
00000000 7FB143A6  MTSPR       273,R29? . <Return>
PPC1-Bug>



PA - Printer Attach   NOPA - Printer Detach

3-168

3

PA - Printer Attach  
NOPA - Printer Detach

Command Input

PA [PORT]

NOPA [PORT]

Description

The PA command attaches a printer to the parallel or serial port that 
you specify. Multiple printers may be attached. When the printer is 
attached, everything that appears on the system console terminal is 
also echoed to the attached port. If no port is specified, PA does not 
attach a port. 

The NOPA command detaches a port. If no port is specified, NOPA 
detaches all attached ports.

The specified port (PORT) must be configured and functional. 
When attaching to a parallel port, the printer must be on-line and 
functioning. Due to the nature of a parallel port, a potential hang 
condition could result if the printer device is not handshaking 
correctly.

If the port is not currently assigned, PA displays a message. If 
NOPA is attempted on a port that is not currently attached, a 
message is displayed.

The port being attached must already be configured using the PF 
command. Refer to PF - Port Format   NOPF - Port Detach on page 
3-178.

Examples

Example 1: Attach logical unit $02.

PPC1-Bug>PA 2 <Return>
PPC1-Bug>



PA - Printer Attach   NOPA - Printer Detach

3-169

3

Example 2: Display current attached printers.

PPC1-Bug>PA <Return>
Printer $02 attached
PPC1-Bug>

Example 3: Detach device at logical unit $02.

PPC1-Bug>NOPA 2 <Return>
Printer $02 detached
PPC1-Bug>

Example 4: Detach all possible attached printers.

PPC1-Bug>NOPA <Return>
PPC1-Bug>



PBOOT - Bootstrap Operating System

3-170

3

PBOOT - Bootstrap Operating System

Command Input

PBOOT ; A|V

PBOOT CLUN DLUN PARTITION [String] [;H ]

Arguments

Options

CLUN Controller Logical Unit Number (CLUN). 
The default is 00.

DLUN Device Logical Unit Number (DLUN). 
The default is 00.
The CLUN/DLUN argument pair is the set of 
parameters that the IOI command reports as 
attached/found/probed devices. Refer to IOI - I/O 
Inquiry on page 3-90 for a complete description.

PARTITION Partition Number 
The default is 0, which speciÞes to boot from the Þrst 
bootable partition, starting with 1 and stepping through 
4. You may also select a partition (1 through 4).

String A string of characters which is displayed as a comment at 
boot time.

A Auto Boot. This option, with no other options, permit the user to 
boot the system using the Auto Boot routine, as it would be 
invoked from the system start-up. This permits users to autoboot 
the system from an interrupted system boot scenario.

V Verbose. This option is the same as A, with the addition of 
displaying boot process messages to allow the user to examine the 
autoboot process.



PBOOT - Bootstrap Operating System

3-171

3

Description

The PBOOT command loads an operating system or control 
program from a mass storage device (e.g., hard disk) into memory 
and give control to it.

Dependent upon the boot device type, the bootable device contains 
the length and offset-into parameters of the boot program. Floppy 
diskette devices and sequential access (i.e., streaming tape) devices 
do not contain a partition table, other devices do.

Devices that require a partition table must contain at least one boot 
partition to be bootable. These devices contain a boot record block 
(512 bytes in size) which contains the partition table. The format of 
the boot record is an extension of the PC environment. The boot 
record is composed of a PC compatibility block and a partition 
table. To support media interchange, the PC compatibility block 
may contain an x86-type program. The entries in the partition table 
identify the PowerPC Reference Platform boot partition and its 
location in the media.

H Boot and halt. Control is not passed to the booted program, but 
back to the debugger monitor. 
This option is useful for examining and patching the booted 
program, and or setting instruction breakpoints prior to execution. 
Once the interim commands are invoked the user may simply use 
the GO command to pass control to booted program.
PBOOT with the H option is analogous to the BH command in 
other Motorola debuggers.



PBOOT - Bootstrap Operating System

3-172

3

The layout of the boot record must be designed as shown in the 
Figure 3-1. The first 446 bytes of the boot record contain a PC 
compatibility block, the next four entries contain a partition table 
totaling 64 bytes, and last two bytes contain a signature.

Figure 3-2 identifies the PowerPC Reference Platform partition 
table entry by the $41 value in the system indicator field.

All other fields are ignored by the debugger except for the 
beginning sector and number of sectors fields. Note that these are 
really not sector entities, but logical block entities. The logical block 
size is 512 bytes, the same size as the boot record.

0
PC Compatibility Block

in the Boot Record

0

$1BE
Partition Entry 1

446

$1CE
Partition Entry 2

462

$1DE
Partition Entry 3

478

$1EE
Partition Entry 4

494

$1FE
$55 $AA

510

512

Figure 3-1.  Boot Record



PBOOT - Bootstrap Operating System

3-173

3

The 32-bit start RBA is zero-based. The 32-bit count RBA value is 
one-based and indicates the number of 512-byte blocks. The count 
is always specified in 512-byte blocks, even if the physical sectoring 
of the target device is not 512-byte sectors.

The devices that are not required to contain a boot record (i.e., 
partition table) are treated as if they have a single partition. 
Basically, the entire media contents is the data within the partition.

Figure 3-3 identifies the layout of the $41 type partition and the 
process of loading the image. The PC Compatibility Block in the 
boot partition may contain x86-type program. When executed on 
an x86 machine, this program displays a message indicating that 
this partition is not applicable to the current system environment.

The second relative block in the boot partition contains the Entry 
Point Offset, Load Image Length, Flag Field, OS_ID field, ASCII 
Partition Name field, and the Reserved1 area. The 32-bit value 
Entry Point Offset (little endian byte ordering) is the offset (into the 
image) of the entry point of the PowerPC Reference Platform boot 
program. The Entry Point Offset is used to allocate the Reserved1 
space. The Reserved1 area from offset 554 to Entry Point - 1 is 
reserved for implementation specific data and future expansion.

The 32-bit value Load Image Length (little endian byte ordering) is 
the length, in bytes, of the load image. The Load Image Length 
specifies the size of the data physically copied into the system RAM 
by the debugger. Note, that the debugger can load the boot 
program image anywhere into system RAM, the boot program is 
responsible for positioning.

partition begin boot ind head sector cyl

partition end sys ind head sector cyl

beginning sector 32-bit start RBA (zero-based) (LE)

number of sectors 32-bit RBA count (one-based) (LE)

Figure 3-2.  PowerPC Reference Platform Partition Table Entry



PBOOT - Bootstrap Operating System

3-174

3
PC Compatibility 

Block

0

Entry Point Offset (LE)
512

Load Image Length (LE)
516

Flag Field
520

OS_ID
521

Partition Name
522

Reserved1
554

OS-SpeciÞc Field
(Optional)

1024

Code Section of the
Load Image

Reserved2

RBA_Count * 512

Figure 3-3.  Layout of the $41-Type Partition

Load Image

Entry Point
(Code Aligned)



PBOOT - Bootstrap Operating System

3-175

3

Once the boot partition is located by using the boot record, the 
debugger will typically:

1. Read into memory the second 512-byte block of the load 
image.

2. Determine the load image length, which runs to, but does not 
include, the Reserved2 space.

3. Allocate a buffer in system RAM for the load image transfer 
(no fixed location).

4. Transfer the remaining portion of the load image into system 
RAM from the boot device (the Reserved2 space is not 
loaded).

After the load image has been loaded, the debugger transfers 
control to the entry point of the loaded code. The state of the 
machine at this point is as follows:

❏ Interrupts are masked (i.e., MPU.MSR.EE bit is set a 0).

❏ System I/O addresses are in the contiguous mode.

❏ The system is Big-Endian mode.

❏ The instruction cache is enabled (L1 only).

❏ MPU.GPR3 is set to the starting address of the residual data.

❏ MPU.GPR4 is set to the starting address of the load image.

❏ MPU.GPR5 is set to a zero.

Examples

Example 1: This example demonstrates a boot and halt scenario. 
The boot device is an CDROM device, as observed by the IOI 
command output.

Note that in this example it was necessary to delimit the remaining 
arguments to enable the H option. This delimiting of arguments 
specifies to use the defaults for the corresponding argument.



PBOOT - Bootstrap Operating System

3-176

3

PPC1-Bug>IOI <Return>
I/O Inquiry Status:
CLUN  DLUN  CNTRL-TYPE  DADDR  DTYPE  RM  Inquiry-Data
   0     0  NCR53C825   0      $00    N   SEAGATE  ST31200N         8630
   0    30  NCR53C825   3      $05    Y   TOSHIBA  CD-ROM XM-3401TA 1094
   1     0  PC8477      0      $00    Y   <None>
PPC1-Bug>PBOOT 0 30,,,;H <Return>
Booting from: NCR53C825, Controller 0, Drive 30
Loading: Operating System

IPL loaded at: $00080000
IP     =00080430 MSR    =00003040 CR     =00000000 FPSCR  =00000000
R0     =00000000 R1     =03FA0000 R2     =00000000 R3     =00000000
R4     =00000000 R5     =00000000 R6     =00000000 R7     =00000000
R8     =00000000 R9     =00000000 R10    =00000000 R11    =00000000
R12    =00000000 R13    =00000000 R14    =00000000 R15    =00000000
R16    =00000000 R17    =00000000 R18    =00000000 R19    =00000000
R20    =00000000 R21    =00000000 R22    =00000000 R23    =00000000
R24    =00000000 R25    =00000000 R26    =00000000 R27    =00000000
R28    =00000000 R29    =00000000 R30    =00000000 R31    =00000000
SPR0   =00000000 SPR1   =00000000 SPR8   =00000000 SPR9   =00000000
00080430 48000005  BL          $00080434
PPC1-Bug>DS * <Return>
00080430 48000005  BL          $00080434
00080434 7E8000A6  MFMSR       R20
00080438 4C00012C  ISYNC
0008043C 7E94A278  XOR         R20,R20,R20
00080440 3A941040  ADDI        R20,R20,$1040
00080444 7E800124  MTMSR       R20
00080448 4C00012C  ISYNC
0008044C 7E94A278  XOR         R20,R20,R20
PPC1-Bug>AS 80438
00080438 4C00012C  ISYNC       ? sync
PPC1-Bug>GO <Return>
Effective address: 00080430
. 
. 
. 

Example 2: This example demonstrates a boot from a direct-access 
device (i.e., hard disk). The fourth partition was specified. The 
device in this example does not contain a bootable fourth partition 
table entry. 

PPC1-Bug>PBOOT 0 0 4 <Return>
Booting from: NCR53C825, Controller 0, Drive 0
Loading: Operating System

Partition Not Bootable
PPC1-Bug>



PBOOT - Bootstrap Operating System

3-177

3

Example 3: This example demonstrates a boot from a direct-access 
device (i.e., hard disk). The default partition is used due to the lack 
of the PARTITION argument.

PPC1-Bug>PBOOT 0 0 <Return>
Booting from: NCR53C825, Controller 0, Drive 0
Loading: Operating System

IPL loaded at: $00080000
. 
. 
. 

The above example is equivalent of:

PPC1-Bug>PBOOT,,, <Return>
Booting from: NCR53C825, Controller 0, Drive 0
Loading: Operating System

IPL loaded at: $00080000
. 
. 
. 

Example 4: This example demonstrates a boot and halt from the 
PC8477 Disk Controller (i.e., floppy disk controller).

PPC1-Bug>PBOOT 1 0,,,;H <Return>
Booting from: PC8477, Controller 1, Drive 0
Loading: Operating System

IPL loaded at: $00080000
IP     =00080400 MSR    =00003040 CR     =00000000 FPSCR  =00000000
R0     =00000000 R1     =03FA0000 R2     =00000000 R3     =00000000
R4     =00000000 R5     =00000000 R6     =00000000 R7     =00000000
R8     =00000000 R9     =00000000 R10    =00000000 R11    =00000000
R12    =00000000 R13    =00000000 R14    =00000000 R15    =00000000
R16    =00000000 R17    =00000000 R18    =00000000 R19    =00000000
R20    =00000000 R21    =00000000 R22    =00000000 R23    =00000000
R24    =00000000 R25    =00000000 R26    =00000000 R27    =00000000
R28    =00000000 R29    =00000000 R30    =00000000 R31    =00000000
SPR0   =00000000 SPR1   =00000000 SPR8   =00000000 SPR9   =00000000
00080400 7C0000A6  MFMSR       R0
PPC1-Bug>



PF - Port Format   NOPF - Port Detach

3-178

3

PF - Port Format  
NOPF - Port Detach

Command Input

PF [PORT]

NOPF [PORT]

Description

The PF command allows you to examine and change the serial 
input/output environment. PF may be used to configure a port that 
is already assigned or assign and configure a new port. PF supports 
PowerPC board drivers and the ports on each. 

PORT is the port to be assigned or configured. Without PORT 
specified, PF displays a list of the current port assignments. 

The NOPF command removes a port assignment. Serial ports 
ÒDEBUGÓ (LUN 0), ÒHOSTÓ (LUN 1), and ÒConsoleÓ (LUN 
dependent, ÒDEBUGÓ LUN by default) are removable.

To assign or configure a port, invoke the command with the port 
number (PORT). Assigning and configuring may be accomplished 
consecutively. You are prompted to configure the port parameters. 
You may change the displayed value by typing a new value, 
followed by the Return key. To leave the field unaltered, press the 
Return key without typing a new value.



PF - Port Format   NOPF - Port Detach

3-179

3

You may also enter a special character, either at the prompt or after 
typing new data, for scrolling through the fields. The special 
characters are:

Any changes will remain in effect until a reset operation occurs, or 
another PF execution. The reset operation, via the debugger, will set 
serial ports ÒDEBUGÓ (LUN 0, port 0) and ÒHOSTÓ (LUN 1, port 1) 
to the default parameters. (Refer to Auto Boot in Chapter 1 for 
details on terminal setup.)

Note Only nine ports may be assigned at any given time. 
PORT must be in the range 0 to $1F.

Listing Current Port Assignments

PF lists the names of the PowerPC board and port for each assigned 
port number (LUN) when the command is invoked with the port 
number omitted.

Example

PPC1-Bug>PF <Return>
Current port assignments:  (Port #: Board name, Port name)
[00: MPC603PPC1- “DEBUG”] [01: MPC603PPC1- “HOST”]
Console = [00: MPC603PPC1- “DEBUG”]
PPC1-Bug>

Current port assignments:  (Port #: Board name, Port name)
[00: PC16550- "DEBUG"] [01: PC16550- "HOST"]
Console = [00: PC16550- "DEBUG"]
PPC1-Bug>

V or v Go to the next Þeld. This is the default, and remains in 
effect until changed by entering one of the other special 
characters.

^ Back up to the previous Þeld. This remains in effect until 
changed by entering one of the other special characters.

= Re-open the same Þeld

. Terminate the PF command, and return control to the 
debugger



PF - Port Format   NOPF - Port Detach

3-180

3

ConÞguring a Port

These are the configurable parameters (these may vary depending 
on the driver):

Port base address:

The base address of the port. This is useful for supporting 
PowerPC boards with adjustable base addressing.

Baud rate [110,300,600,1200,2400,4800,9600,19200]?

The baud rate 

Note If a number base is not specified, the default is decimal, 
not hexadecimal.

Even, Odd, or No Parity [E,O,N] = N?

Character width [5,6,7,8] = 8?

Character width, in bits

Stop Bits [1,2] = 1?

The number of stop bits

Example

Change the number of stop bits to 2.

E Even

O Odd

N Disabled



PF - Port Format   NOPF - Port Detach

3-181

3

PPC1-Bug>PF 1 <Return>
Baud rate [110,300,600,1200,2400,4800,9600,19200] = 9600? <Return>
Even, Odd, or No Parity [E,O,N] = N? <Return>
Character width [5,6,7,8] = 8? <Return>
Stop Bits [1,2] = 1? 2 <Return>
Auto Xmit enable on CTS* [Y,N] = N? . <Return>
OK to proceed (y/n)? Y <Return>
PPC1-Bug>

Assigning a New Port

These are the configurable parameters (these may vary depending 
on the driver):

Name of board?

The device driver. Press the Return key to see a list the currently 
supported PowerPC drivers and ports. The controllers are:

Name of port?

The name of the port. The available boards are:

Port base address = $00000000?

The base address of the port

XON = $11=^Q?  

XOFF = $13=^S?

Flow control (software handshake) characters (case sensitive). 
ASCII control characters or hexadecimal values are accepted.

VKIO VGA Keyboard I/O

PC16550 Asynchronous Communications

Z85C230 Serial Communications

PC87303 Parallel Printer

DEBUG Serial Port 1

HOST Serial Port 2

CPP Parallel Printer Port



PF - Port Format   NOPF - Port Detach

3-182

3

If the new port has not been configured, the interactive 
configuration mode is entered (refer to Configuring a Port on page 
3-180). If the new port has been configured, the OK to proceed 
(y/n)?  prompt appears.

PF does not initialize any hardware until you have responded with 
a Y to prompt OK to proceed (y/n)? . Pressing the BREAK key 
on the console any time prior to this step or responding with an N 
at the prompt leaves the port unassigned.

Example

PPC1-Bug>PF 10 <Return>
Logical unit $10 unassigned
Name of board?  <Return>
Boards and ports supported:
VKIO:  DEBUG
PC16550:  DEBUG, HOST
Z85C230:  DEBUG, HOST
PC87303:  CPP
Name of board?  VKIO <Return>
Name of port?  DEBUG <Return>
Port base address = $00000000?  <Return>
XON = $11=̂ Q?  <Return>
XOFF = $13=̂ S? . <Return>
OK to proceed (y/n)? Y <Return>
PPC1-Bug>

NOPF Port Detach

The NOPF command unassigns the port number (PORT 
argument). Only one port may be unassigned at a time. Invoking 
NOPF without a port number does not unassign any ports.



PFLASH - Program FLASH Memory

3-183

3

PFLASH - Program FLASH Memory

Command Input

PFLASH SSADDR SEADDR DSADDR [IEADDR] [;[A|R] [X]]

PFLASH SSADDR:COUNT DSADDR [IEADDR] [;[B|W|L] [A|R] [X]]

Arguments

Options

SSADDR Source starting address of the binary image to program the 
FLASH memory with

SEADDR Source ending address of the binary image to program the 
FLASH memory with

DSADDR Destination starting address of the FLASH memory to 
program the binary image to

COUNT Number of elements to program. 
A colon (:) is required to indicate that the second argument 
is COUNT instead of SEADDR.

IEADDR Instruction execution address (i.e., PC/IP). This address 
points to a reset vector for MPC60x architectures.

B Byte

H Half-word

W Word

R Allow the automatic reset (local) of the hardware upon 
completion of programming the FLASH Memory, only 
when the programming is completed error free. Resetting 
is done only if the board supports it. 

A Allow the automatic reset (local) of the hardware upon 
completion of programming the FLASH Memory. 
Resetting is done only if the board supports it.

X Allow the FLASH Memory driver to always execute the 
passed execution address, even on error. This option is 
valid only when you specify the instruction execution 
address.



PFLASH - Program FLASH Memory

3-184

3

Description

The PFLASH command loads an application or program into Flash 
memory. The command line arguments are checked (e.g., does the 
destination range lie completely within the Flash memory?, are 
there overlapping address spaces?, are the address arguments 
aligned?). If an argument does not pass, an appropriate error 
message is displayed and control is passed back to the monitor with 
the Flash memory contents undisturbed.

Physically, PPCBug is contained in two socketed 32-pin PLCC 
Flash memory devices that together provide 1MB ($00100000) of 
storage. PPCBug uses the entire memory contained in the two 
devices. The executable code is checksummed at every power-on or 
reset firmware entry. The result is checked with a pre-calculated 
checksum contained in the last 16-bit word of the Flash image.

The element size is determined by the size (B, W, or L) option. The 
default B.

If the programming agent is the debugger and it is resident in the 
Flash memory, it may have to download the Flash memory driver. 
The downloaded driver uses the board's system fail LED and 
NVRAM to communicate programming errors. This hardware 
notification of a Flash memory programming error is only 
necessary if you are reprogramming the programming agent's text 
and data space. Otherwise, errors are communicated by means of 
the programming terminal (serial I/O).

Upon error free completion of the Flash memory programming, 
control is passed back to the monitor. If the instruction execution 
address argument is specified, control will be passed to this 
address. If the programming agent is reprogrammed and the 
instruction execution address argument is not specified, control 
remains within the Flash memory driver (do nothing, wait for 
reset).

If the Flash memory driver was downloaded, messages are not 
displayed on the terminal. If return from the downloaded driver is 
not possible, and the instruction execution or the local reset option 



PFLASH - Program FLASH Memory

3-185

3

is not specified, upon successful completion, the driver blinks the 
FAIL LED at the rate of once per 1/2 second. Upon any error the 
driver illuminates the FAIL LED (no blinking).

If the Flash memory driver was not downloaded, one or more of the 
following messages may be displayed on the terminal: 

FLASH Memory PreProgramming Error: Address-Alignment
FLASH Memory PreProgramming Error: Address-Range
FLASH Memory Programming Complete
FLASH Memory Programming Error: Zero-Phase
FLASH Memory Programming Error: Erase-Phase
FLASH Memory Programming Error: Write-Phase

FLASH Memory Programming Error: Erase-Phase_Time-Out
FLASH Memory Programming Error: Write-Phase_Time-Out
FLASH Memory Programming Error: Verify-Phase

The Ò;rÓ option on the ÒpflashÓ command is most frequently used 
because without this option the user does not know when the 
ÒpflashÓ command function has completed. When the Ò;rÓ option is 
used on the ÒpflashÓ command, it is important to remember that it 
uses the current setting from the ÒRESETÓ command (i.e., the 
Òwarm/coldÓ selection from the command.)

Note A full board reset must be done in order for the 
ÒpflashÓ command to work correctly (i.e., that the 
ÒRESETÓ command specifies a ÒCOLDÓ reset.) If you 
have recently reset your board with a warm reset - 
please make sure that you reexecute the ÒRESETÓ 
command with the cold option prior to reflashing your 
board with the PFLASH command (refer to the RESET 
command for further details).

Example

The following is an example of programming the Flash memory 
with an updated version of the debugger. The example assumes 
that the updated version has been loaded into memory.



PFLASH - Program FLASH Memory

3-186

3

PPC1-Bug>BM FFF00000:100000/4 100000 <Return>
Effective address: FFF00000 
Effective count  : &1048576 
Effective address: 00100000 
PPC1-Bug>PFLASH 100000:100000 FFF00000;R <Return>
Source Starting/Ending Addresses      =00100000/001FFFFF
Destination Starting/Ending Addresses =FFF00000/FFFFFFFF
Number of Effective Bytes             =00100000 (&1048576)

Program FLASH Memory (Y/N)? Y <Return>

The reset option R was utilized to restart the debugger. If it was not 
used, the user would not know when the programming is complete.



PS - Put RTC into Power Save Mode

3-187

3

PS - Put RTC into Power Save Mode

Command Input

PS 

Description

The PS command turns off the oscillator in the RTC chip. The 
PowerPC board is shipped with the RTC oscillator stopped to 
minimize current drain from the onchip battery. Normal cold start 
of the board with the PPCBug FLASH devices installed gives the 
RTC a Òkick startÓ to begin oscillation.

Use SET command to restart the clock.

Example

PPC1-Bug>PS <Return> 
(Clock is in Battery Save Mode)
PPC1-Bug> 



RB - ROMboot Enable   NORB - ROMboot Disable

3-188

3

RB - ROMboot Enable  
NORB - ROMboot Disable

Command Input

RB[;V]

NORB 

Description

The RB command invokes the search for and booting from a 
ROMboot routine encoded in FLASH memory on the board. 
However, the routine can be stored in other memory locations, if 
configured to do so with the ENV command. Refer also to ROMboot 
in Chapter 1.

The V option enables verbose mode operation.

NORB disables the search for a ROMboot routine, but does not 
change the options chosen.

The default condition is with the ROMboot function disabled.

Examples

Example 1: For this example, assume the existence of a valid 
ROMboot routine at $10000.

PPC1-Bug>RB <Return>
ROMboot in progress... To abort hit <BREAK>
FRI SEP 15 11:50:21.00 1994
PPC1-Bug>

Example 2: For this example, assume the existence of a valid 
ROMboot routine at $10000.

PPC1-Bug>RB;V <Return>
ROMboot in progress... To abort hit <BREAK>
Direct Adr: FFC00000 FFC00000: Searching for ROMboot Module at: FFC00000
ROM       : FFC00000 FFC7FFFC: Searching for ROMboot Module at: FFC7E000
Local RAM : 00000000 00FFFFFC: Searching for ROMboot Module at: 00010000
Executing ROMboot Module "TEST" at 00010000
FRI SEP 15 11:50:21.00 1989
PPC1-Bug>



RB - ROMboot Enable   NORB - ROMboot Disable

3-189

3

Example 3: 

PPC1-Bug> NORB <Return>
ROM boot disabled
PPC1-Bug>



RD - Register Display

3-190

3

RD - Register Display

Command Input

RD [{[+|-|=] [DNAME] [/]}{[+|-|=] [REG1[-REG2]] [/]}] [;E]

Arguments

Description

The RD command displays the register state associated with the 
target program (refer to the GO command). The instruction pointed 
to by the target IP is disassembled and displayed also. Internally, a 
register mask specifies which registers are displayed when RD is 
executed.

At reset time, this mask is set to display the default (DEF) registers 
only. This register mask can be changed with the RD command. 
The optional arguments allow you to enable or disable the display 
of any register or group of registers. This is useful for showing only 
the registers of interest, minimizing unnecessary data on the screen; 
and also in saving screen space.

The E option elects an internal bank of registers that is updated 
upon every exception, regardless of whether the exception 
occurred while executing target code or the debugger itself. This 
option allows you to get a glimpse of what was happening when a 
debugger command caused an exception. These registers are not 
accessible using other debugger commands.

Use the following characters with the arguments:

DNAME MPU for Microprocessor Unit,
DEF for default

REG1 First register in a range of registers

REG2 Last register in a range of registers

+ The device or register range is to be added

- The device or register range is to be removed, except when 
used between two register names. In this case, it indicates a 
register range.



RD - Register Display

3-191

3

Note the following when specifying any arguments in the 
command line:

❏ The +, -, or = qualifier applies to the next register range only.

❏ If no qualifier is specified, a + is assumed, even for the 
default.

❏ All device names should appear before any register names.

❏ The command line arguments are parsed from left to right, 
with each argument being processed after parsing; thus the 
sequence in which qualifiers and registers are organized has 
an impact on the resultant register mask.

❏ When specifying a register range, REG1 and REG2 do not 
have to be of the same class.

❏ The register mask used by RD is also used by all exception 
handler routines, including the trace and breakpoint 
exception handlers.

The MPU registers, in ordering sequence, are (total of 117 registers):

= The device or register range is to be set. This character 
followed by DEF in the DNAME argument restores the 
register mask to select those registers originally displayed.

/ A required delimiter between device names and register 
ranges

IP Instruction Pointer

MSR Machine State Register

CR Condition Codes Register

FPSCR Floating Point Status/Control Register

R0-R31 General Purpose (32)

SR0-SR15 Segment Registers (16)

SPR0-SPR1023 Special Purpose Registers (33)

FR0-FR31 Floating Point Data Registers (32)



RD - Register Display

3-192

3

Examples

Example 1: Default display - MPU subset (also called out by DEF):

PPC1-Bug>RD <Return>
IP     =00040010 MSR    =00003030 CR     =00000020 FPSCR  =00000000
R0     =00000000 R1     =00020000 R2     =FFF0178C R3     =00041000
R4     =22EDB280 R5     =00000000 R6     =00000000 R7     =00000000
R8     =00000000 R9     =00000000 R10    =00000000 R11    =00000000
R12    =00000000 R13    =00000000 R14    =00000000 R15    =00000000
R16    =00000000 R17    =00000000 R18    =00000000 R19    =00000000
R20    =00000000 R21    =00000000 R22    =00000000 R23    =00000000
R24    =00000000 R25    =00000000 R26    =00000000 R27    =00000000
R28    =00000000 R29    =00000000 R30    =00000000 R31    =00000000
SPR0   =00000000 SPR1   =00000000 SPR8   =00020014 SPR9   =00000000
00040010 4E800020  BCLR        20,0
PPC1-Bug>

Example 2: Change the mask to display all MPU registers.

PPC1-Bug>RD +MPU <Return>
IP     =00040010 MSR    =00003030 CR     =00000020 FPSCR  =00000000
R0     =00000000 R1     =00020000 R2     =FFF0178C R3     =00041000
R4     =22EDB280 R5     =00000000 R6     =00000000 R7     =00000000
R8     =00000000 R9     =00000000 R10    =00000000 R11    =00000000
R12    =00000000 R13    =00000000 R14    =00000000 R15    =00000000
R16    =00000000 R17    =00000000 R18    =00000000 R19    =00000000
R20    =00000000 R21    =00000000 R22    =00000000 R23    =00000000
R24    =00000000 R25    =00000000 R26    =00000000 R27    =00000000
R28    =00000000 R29    =00000000 R30    =00000000 R31    =00000000
SR0    =60000000 SR1    =00000000 SR2    =00000000 SR3    =00000000
SR4    =00000000 SR5    =00000000 SR6    =00000000 SR7    =00000000
SR8    =E7F00008 SR9    =E7F00009 SR10   =00000000 SR11   =00000000
SR12   =00000000 SR13   =00000000 SR14   =00000000 SR15   =60000000
SPR0   =00000000 SPR1   =00000000 SPR4   =00AD6BA7 SPR5   =22EE2A00
SPR8   =00020014 SPR9   =00000000 SPR18  =40000000 SPR19  =FFEC0000
SPR20  =FFEC0000 SPR21  =FFEC0000 SPR22  =16A30500 SPR25  =00000000
SPR26  =00040010 SPR27  =00083030 SPR272 =00004210 SPR273 =00000000
SPR274 =00000000 SPR275 =00000000 SPR282 =00083030 SPR286 =00083030
SPR528 =0000000E SPR529 =0000007F SPR530 =FFF0000F SPR531 =FFF00047
SPR532 =00000000 SPR533 =00000000 SPR534 =00000000 SPR535 =00000000
SPR1008=80810080 SPR1009=00000000 SPR1010=00000000 SPR1013=00000000
SPR1023=00000000
FR0    =0_3DE_70C6B50A527AC= 1.6770000000000003_E-0010
FR1    =0_407_0000000000000= 2.5600000000000000_E+0002
FR2    =0_40C_3880000000000= 1.0000000000000000_E+0004
FR3    =1_3FF_0000000000000=-1.0000000000000000_E+0000
FR4    =0_400_8000000000000= 3.0000000000000000_E+0000
FR5    =0_000_0000000000000= 0.0000000000000000_E+0000



RD - Register Display

3-193

3

FR6    =0_000_0000000000000= 0.0000000000000000_E+0000
FR7    =0_000_0000000000000= 0.0000000000000000_E+0000
FR8    =0_000_0000000000000= 0.0000000000000000_E+0000
FR9    =0_000_0000000000000= 0.0000000000000000_E+0000
FR10   =0_000_0000000000000= 0.0000000000000000_E+0000
FR11   =0_000_0000000000000= 0.0000000000000000_E+0000
FR12   =0_000_0000000000000= 0.0000000000000000_E+0000
FR13   =0_000_0000000000000= 0.0000000000000000_E+0000
FR14   =0_000_0000000000000= 0.0000000000000000_E+0000
FR15   =0_000_0000000000000= 0.0000000000000000_E+0000
FR16   =0_000_0000000000000= 0.0000000000000000_E+0000
FR17   =0_000_0000000000000= 0.0000000000000000_E+0000
FR18   =0_000_0000000000000= 0.0000000000000000_E+0000
FR19   =0_000_0000000000000= 0.0000000000000000_E+0000
FR20   =0_000_0000000000000= 0.0000000000000000_E+0000
FR21   =0_000_0000000000000= 0.0000000000000000_E+0000
FR22   =0_000_0000000000000= 0.0000000000000000_E+0000
FR23   =0_000_0000000000000= 0.0000000000000000_E+0000
FR24   =0_000_0000000000000= 0.0000000000000000_E+0000
FR25   =0_000_0000000000000= 0.0000000000000000_E+0000
FR26   =0_000_0000000000000= 0.0000000000000000_E+0000
FR27   =0_000_0000000000000= 0.0000000000000000_E+0000
FR28   =0_000_0000000000000= 0.0000000000000000_E+0000
FR29   =0_000_0000000000000= 0.0000000000000000_E+0000
FR30   =0_000_0000000000000= 0.0000000000000000_E+0000
FR31   =0_000_0000000000000= 0.0000000000000000_E+0000
00040010 4E800020  BCLR        20,0
PPC1-Bug>

Afterwards, every time RD is executed, all MPU registers are 
displayed.

To change the mask and disable the display of MPU registers, 
execute the following command:

PPC1-Bug>RD -MPU <Return>
00040010 4E800020  BCLR        20,0
PPC1-Bug>



RD - Register Display

3-194

3

Example 3: Add only FR0 and FR1 to the original default display.

PPC1-Bug>RD FR0/FR1 <Return>
IP     =00040010 MSR    =00003030 CR     =00000020 FPSCR  =00000000
R0     =00000000 R1     =00020000 R2     =FFF0178C R3     =00041000
R4     =22EDB280 R5     =00000000 R6     =00000000 R7     =00000000
R8     =00000000 R9     =00000000 R10    =00000000 R11    =00000000
R12    =00000000 R13    =00000000 R14    =00000000 R15    =00000000
R16    =00000000 R17    =00000000 R18    =00000000 R19    =00000000
R20    =00000000 R21    =00000000 R22    =00000000 R23    =00000000
R24    =00000000 R25    =00000000 R26    =00000000 R27    =00000000
R28    =00000000 R29    =00000000 R30    =00000000 R31    =00000000
SPR0   =00000000 SPR1   =00000000 SPR8   =00020014 SPR9   =00000000
FR0    =0_3DE_70C6B50A527AC= 1.6770000000000003_E-0010
FR1    =0_407_0000000000000= 2.5600000000000000_E+0002
00040010 4E800020  BCLR        20,0
PPC1-Bug>

Example 4: Remove R10-R21 and R29 from the previous display.

PPC1-Bug>RD -R10-R21/-R29 <Return>
IP     =00040010 MSR    =00003030 CR     =00000020 FPSCR  =00000000
R0     =00000000 R1     =00020000 R2     =FFF0178C R3     =00041000
R4     =22EDB280 R5     =00000000 R6     =00000000 R7     =00000000
R8     =00000000 R9     =00000000 R22    =00000000 R23    =00000000
R24    =00000000 R25    =00000000 R26    =00000000 R27    =00000000
R28    =00000000 R30    =00000000 R31    =00000000
SPR0   =00000000 SPR1   =00000000 SPR8   =00020014 SPR9   =00000000
FR0    =0_3DE_70C6B50A527AC= 1.6770000000000003_E-0010
FR1    =0_407_0000000000000= 2.5600000000000000_E+0002
00040010 4E800020  BCLR        20,0
PPC1-Bug>

Example 5: Set the display to R2 and R31 only. (Note that this 
sequence sets the display to R2 only, then adds register R31 to the 
display.)

PPC1-Bug>RD =R2/R31 <Return>
R2     =FFF0178C R31    =00000000
00040010 4E800020  BCLR        20,0
PPC1-Bug>



RD - Register Display

3-195

3

Example 6: Restore the display to the original set.

PPC1-Bug>RD =DEF <Return>
IP     =00040010 MSR    =00003030 CR     =00000020 FPSCR  =00000000
R0     =00000000 R1     =00020000 R2     =FFF0178C R3     =00041000
R4     =22EDB280 R5     =00000000 R6     =00000000 R7     =00000000
R8     =00000000 R9     =00000000 R10    =00000000 R11    =00000000
R12    =00000000 R13    =00000000 R14    =00000000 R15    =00000000
R16    =00000000 R17    =00000000 R18    =00000000 R19    =00000000
R20    =00000000 R21    =00000000 R22    =00000000 R23    =00000000
R24    =00000000 R25    =00000000 R26    =00000000 R27    =00000000
R28    =00000000 R29    =00000000 R30    =00000000 R31    =00000000
SPR0   =00000000 SPR1   =00000000 SPR8   =00020014 SPR9   =00000000
00040010 4E800020  BCLR        20,0
PPC1-Bug>



REMOTE - Remote

3-196

3

REMOTE - Remote

Command Input

REMOTE

Description

The REMOTE command initiates a service call through a remote 
modem. This command duplicates the Initiate Service Call option 
of the System Menu, which is assessed through the MENU 
command.

Refer to MENU - System Menu on page 3-128 and to Appendix B for 
information on service calls.



RESET - Cold/Warm Reset

3-197

3

RESET - Cold/Warm Reset

Command Input

RESET

Description

The RESET command allows you to specify the level of reset 
operation that will be in effect when a RESET exception is detected 
by the processor. A reset exception can be generated by pressing the 
RESET switch on the debugger host.

Two RESET levels are available:

Use the ÒwarmÓ RESET option with caution, since using this option 
will prevent the execution of the full board initialization on *ALL* 
RESETs until this option is modified to ÒcoldÓ.

Control may passed to the boot routine, System Menu, or the 
diagnostics prompt, according to the ENV command parameters.

Example

Set to ÒcoldÓ start.

PPC1-Bug>RESET <Return>
Cold/Warm Reset [C,W] = C? c <Return>
Execute Local SCSI Bus Reset [Y,N] = N?  <Return>
Execute Local (CPU) Reset [Y,N] = N?  Y<Return>

Copyright Motorola Inc. 1988 - 1995, All Rights Reserved 

PPC1Bug Debugger/Diagnostics Release Version x.x - mm/dd/yy 
COLD Start 

Local Memory Found =nnnnnnnn (&nnnnnnnn) 

Cold This is the standard level of operation, and is the one 
defaulted to on power-up. In this mode, all the static 
variables are initialized every time a reset is done. 

Warm In this mode, all the static variables are preserved when a 
reset exception occurs. This is convenient for keeping 
breakpoints, offset register values, the target register state, 
and any other static variables in the system. 



RESET - Cold/Warm Reset

3-198

3

MPU Clock Speed =xxMhz 

BUS Clock Speed =xxMhz

PPC1-Bug>



RL - Read Loop

3-199

3

RL - Read Loop

Command Input

RL ADDR[;B|H|W]

Options

Description

The RL command establishes an infinite loop consisting of a 
processor load instruction targeted to the given address and of the 
given length (the default data size is word), followed by a branch 
instruction back to the load. Hence the address is accessed 
repeatedly in rapid succession.

The read loop can only be terminated by an external occurrence, 
such as an interrupt (usually an abort), a reset from the RST switch, 
or power cycle.

B Byte

H Half-word

W Word



RM - Register Modify

3-200

3

RM - Register Modify

Command Input

RM [REG]

Description

The RM command allows you to display and change the target 
registers. 

REG is the target register. If REG is not specified, all the registers are 
displayed in sequence.

When invoked without options, the RM command enters an 
interactive mode where the register contents currently in effect are 
displayed one-at-a-time on the console for the operator to examine. 
You may change the displayed value by typing a new value, 
followed by the Return key. To leave the register unaltered, press 
the Return key without typing a new value.

You may also enter a special character, either at the prompt or after 
typing new data, for scrolling through the registers. The special 
characters are:

Examples

Example 1: Modify register R5 and exit.

PPC1-Bug>RM R5 <Return>
R5     =12345678? ABCDEF. <Return>
PPC1-Bug>

V or v Open the next register. This is the default, and remains in 
effect until changed by entering one of the other special 
characters.

^ Back up and open the previous register

= Re-open the same register

. Terminate the RM command, and return control to the 
debugger



RM - Register Modify

3-201

3

Example 2: Modify register FR0 and view the results.

PPC1-Bug>RM FR0 <Return>
FR0  =0_384_4ED67D467D9BF= 1.2300000000000004_E-0037? 1.677E-10 <Return>
FR1  =0_000_0000000000000= 0.0000000000000000_E+0000? &256 <Return>
FR2  =0_000_0000000000000= 0.0000000000000000_E+0000? 10000 <Return>
FR3  =0_000_0000000000000= 0.0000000000000000_E+0000? -1 <Return>
FR4  =0_000_0000000000000= 0.0000000000000000_E+0000? &1+&2. <Return>
PPC1-Bug>RM FR0 <Return>
FR0  =0_3DE_70C6B50A527AC= 1.6770000000000003_E-0010? <Return>
FR1  =0_407_0000000000000= 2.5600000000000000_E+0002? <Return>
FR2  =0_40C_3880000000000= 1.0000000000000000_E+0004? <Return>
FR3  =1_3FF_0000000000000=-1.0000000000000000_E+0000? <Return>
FR4  =0_400_8000000000000= 3.0000000000000000_E+0000? . <Return>
PPC1-Bug>

Example 3: List all registers.

PPC1-Bug>RM <Return>
IP     =00040010? <Return>
MSR    =00003030? <Return>
CR     =00000020? <Return>
FPSCR  =00000000? <Return>
R0     =00000000? <Return>
R1     =00020000? <Return>
R2     =FFF0178C? <Return>
R3     =00041000? <Return>
...

R29    =00000000? <Return>
R30    =00000000? <Return>
R31    =00000000? <Return>
SR0    =60000000? <Return>
SR1    =00000000? <Return>
SR2    =00000000? <Return>
...

SR13   =00000000? <Return>
SR14   =00000000? <Return>
SR15   =60000000? <Return>
SPR0   =00000000? <Return>
SPR1   =00000000? <Return>
SPR4   =00AD6BA7? <Return>
SPR5   =22EE2A00? <Return>
SPR8   =00020014? <Return>
SPR9   =00000000? <Return>
SPR18  =40000000? <Return>
SPR19  =FFEC0000? <Return>



RM - Register Modify

3-202

3

SPR20  =FFEC0000? <Return>
SPR21  =FFEC0000? <Return>
SPR22  =16A30500? <Return>
SPR25  =00000000? <Return>
SPR26  =00040010? <Return>
SPR27  =00083030? <Return>
SPR272 =00004210? <Return>
SPR273 =00000000? <Return>
SPR274 =00000000? <Return>
SPR275 =00000000? <Return>
SPR282 =00083030? <Return>
SPR286 =00083030? <Return>
SPR528 =0000000E? <Return>
SPR529 =0000007F? <Return>
SPR530 =FFF0000F? <Return>
SPR531 =FFF00047? <Return>
SPR532 =00000000? <Return>
SPR533 =00000000? <Return>
SPR534 =00000000? <Return>
SPR535 =00000000? <Return>
SPR1008=80810080? <Return>
SPR1009=00000000? <Return>
SPR1010=00000000? <Return>
SPR1013=00000000? <Return>
SPR1023=00000000? <Return>
FR0    =0_3DE_70C6B50A527AC= 1.6770000000000003_E-0010? <Return>
FR1    =0_407_0000000000000= 2.5600000000000000_E+0002? <Return>
FR2    =0_40C_3880000000000= 1.0000000000000000_E+0004? <Return>
...

FR29   =0_000_0000000000000= 0.0000000000000000_E+0000? <Return>
FR30   =0_000_0000000000000= 0.0000000000000000_E+0000? <Return>
FR31   =0_000_0000000000000= 0.0000000000000000_E+0000? <Return>
CPUIEN =0000FEFB? . <Return>
PPC1-Bug>



RS - Register Set

3-203

3

RS - Register Set

Command Input

RS REG [EXP|ADDR]

Description

The RS command allows you to change the data in the specified 
target register. It works in essentially the same way as the RM 
command.

REG is the target register.

When invoked without options, the RM command enters an 
interactive mode where the register contents currently in effect are 
displayed one-at-a-time. You may change the displayed value by 
typing a new value followed by the Return key. To leave the 
register unchanged, press the Return key without typing a new 
value.

You may also enter a special character, either at the prompt or after 
typing new data, for scrolling through the registers. The special 
characters are:

Examples

Example 1: Change register R5.

PPC1-Bug>RS R5 12345678 <Return>
R5     =12345678
PPC1-Bug>

V or v Open the next register. This is the default, and remains in 
effect until changed by entering one of the other special 
characters.

^ Back up and open the previous register

= Re-open the same register

. Terminate the RS command, and return control to the 
debugger



RS - Register Set

3-204

3

Example 2: Examine register R5.

PPC1-Bug>RS R5 <Return>
R5     =12345678
PPC1-Bug>

Example 3: Examine register FR0.

PPC1-Bug>RS FR0 <Return>
FR0    =0_44D_09F7E57C92CC4= 3.1399999999999997_E+0023
PPC1-Bug>

Example 4: Set register FR0 contents.

PPC1-Bug>RS FR0 1.23E-37 <Return>
FR0    =0_384_4ED67D467D9BF= 1.2300000000000004_E-0037
PPC1-Bug>



RUN - MPU Execution/Status

3-205

3

RUN - MPU Execution/Status

Note This command is for multi-processor boards only.

Command Input

RUN [MPU#]

Description

The RUN command allows you to inquire of the BUG the current 
state of each of the processors. The command also allows you to 
switch an idle processor to the current processor (processor 
executing the debugger). The MPU# argument depends on your 
configuration and idle processors present. If your configuration is 
less than a two processor setup, an error message will be displayed 
instead.

Examples

Example 1:

PPC1-Bug>run (current state of all possible processors)
MPU0 : MASTER
MPU1 : IDLE
PPC1-Bug>

Example 2:

PPC1-Bug>run 1 (switch to processor #1 as master/current)
PPC1-Bug>

PPC1-Bug>run (current state of all possible processors)
MPU0 : IDLE
MPU1 : MASTER
PPC1-Bug>



RUN - MPU Execution/Status

3-206

3

Descriptions of all possible states:

Note The debugger only permits one processor to execute 
the debugger monitor. This is achieve by placing a 
semaphore prior to the exception handler access. The 
stalled processor will wait indefinitely. The 
current/master processor must be idled, forked, or 
executed (GO, GT, GN, GD commands) before the 
stalled processor is serviced.

State                                            Description                             

IDLE Processor is idle (can be forked).

UNKNOWN Processor never became idle from start up 
(power-up/reset).

EXECUTING TARGET Processor has been forked to target code.

ERROR Illegal state.

EXCEPTION PROCESSING PENDING Processor is stalled at the exception handler 
semaphore (see NOTE).



SD - Switch Directories

3-207

3

SD - Switch Directories

Command Input

SD

Description

The SD command allows you to switch from the debugger 
directory to the diagnostic directory or from the diagnostic 
directory to the debugger directory. The prompt indicates the 
current directory (PPC1-Bug>  for the debugger, and PPC1-Diag>  
for the diagnostics).

The commands in the current directory (the directory that you are 
in at the particular time) may be listed using the HE command.

The debugger commands are available from either directory, but 
the diagnostic commands are only available from the diagnostic 
directory.

Examples

Example 1: Switch from the debugger directory to the diagnostic 
directory.

PPC1-Bug>SD <Return>
PPC1-Diag>

Example 2: Switch from the diagnostic directory to the debugger 
directory.

PPC1-Diag> SD <Return>
PPC1-Bug>



SET - Set Time and Date

3-208

3

SET - Set Time and Date

Command Input

SET mmddyyhhmm

Description

The SET command starts the RTC and sets the time and date. The 
argument, mmddyyhhmm, represents two digits each of month, day, 
year, hour, and minutes. Hours should be in Military (24-hour) 
form.

mmddyyhhmm is validated to ensure that it corresponds to a legal 
date and time, and if valid, the time-of-day clock is updated to 
correspond, and a formatted date and time message is displayed as 
a check. The SET command may be repeated to correct the date and 
time.

The clock must be running in order for the network I/O commands 
(i.e., NAB, NBH, NBO, NIOC, NIOP, and NPING) to work 
properly. Use TIME ;L to see if the clock is running. Use the SET 
command to start and initialize the clock.

Use the TIME command to display the current date and time of day 
(refer to TIME - Display Time and Date on page 3-221).

Example

Set the date and time:

PPC1-Bug>SET 05151405 <Return>
MON MAY 15 14:05:00.00 1995
PPC1-Bug>



SROM - SROM Examine/Modify

3-209

3

SROM - SROM Examine/Modify

Command Input

SROM [offset]

Options:

None

Description:

The SROM command allows the user to examine and modify the 
contents of the network SROM attached to the DEC21140 Ethernet 
chip.

When the command is invoked, the user will be prompted with 
choices of base addresses of DEC21140 chips which have attached 
SROMs. Upon selection of the device, the SROM contents is read 
into a buffer and the user allowed to view and edit the buffer. If 
changes are made to the buffer contents, the user is prompted 
whether to allow the SROM to be updated or not. The SROM 
command also automatically calculates the required SROM 
checksum and writes it to the SROM if allowed by the user.

The optional offset argument allows the user to specify what offset 
within the buffer to begin viewing/editing at. If omitted, a default 
value of 0 is used for offset.

When the command is entered at the BUG prompt, an opportunity 
is given to edit the SROM for each device present on any attached 
PMCspan board, as well as the base board.

!
Caution

In normal cases, the network SROM will have been 
programmed at the factory to the correct contents. 
Proper operation of the Ethernet interface under both 
BUG and Operating Systems is dependent on the SROM 
containing correct information. Users should not 
modify the SROM contents unless there is a well 
understood reason for doing so.



SROM - SROM Examine/Modify

3-210

3

Examples:

Example 1: To simply view the first 26 bytes of SROM contents and 
not change any entry:

PPC1-Bug>srom

Device Address =$80804000 (N/Y)? y
Reading SROM into Local Buffer.....
$00 (&000) 5710?
$02 (&002) 0000?
$04 (&004) 0000?
$06 (&006) 0000?
$08 (&008) 0000?
$0A (&010) 0000?
$0C (&012) 0000?
$0E (&014) 0000?
$10 (&016) AF00?
$12 (&018) 0301?
$14 (&020) 0800?
$16 (&022) 3E25?
$18 (&024) 3157?  .
PPC1-Bug>

Example 2: Assume the proper Ethernet address was 08003E263157 
instead of 08003E253157. It could be modified as follows:

PPC1-Bug>srom

Device Address =$80804000 (N/Y)? y
Reading SROM into Local Buffer.....
$00 (&000) 5710?
$02 (&002) 0000?
$04 (&004) 0000?
$06 (&006) 0000?
$08 (&008) 0000?
$0A (&010) 0000?
$0C (&012) 0000?
$0E (&014) 0000?
$10 (&016) AF00?
$12 (&018) 0301?
$14 (&020) 0800?
$16 (&022) 3E25? 3e26.

Update SROM (Y/N)? y

Calculate CRC (Y/N)? y
Writing SROM from Local Buffer.....
Verifying SROM with Local Buffer...
PPC1-Bug>



SYM - Symbol Table Attach   NOSYM - Symbol Table Detach

3-211

3

SYM - Symbol Table Attach  
NOSYM - Symbol Table Detach

Command Input

SYM [ADDR]

NOSYM

Description

The SYM command attaches a symbol table to the debugger. Once 
a symbol table has been attached, all displays of physical addresses 
are first looked up in the symbol table to see if the address is in 
range of any of the symbols (symbol data). If the address is in range, 
it is displayed with the corresponding symbol name and offset (if 
any) from the symbol's base address (symbol data). In addition to 
the display, any command line input that supports an address as an 
argument can now take a symbol name for the address argument. 
The address argument is first looked up in the symbol table to see 
if it matches any of the addresses (symbol data) before conversion 
takes place.

It is your responsibility to load the symbol table into memory. This 
command is analogous to the system call .SYMBOLTA. Refer to 
Chapter 5 for the description of the system call.

ADDR is the location where the symbol table begins in memory. 
The default address of the symbol table is your default instruction 
pointer. The symbol table must be word-aligned. 

The Number of Entries in Symbol Table field governs the size of the 
symbol table. The Symbol Data field must be word-aligned and the 
Symbol Name field must consist only of printable characters (ASCII 
codes $21 through $7E). The symbol name may be terminated with 
a null ($00) character. The symbol data fields must be ascending in 
value (sorted numerically).



SYM - Symbol Table Attach   NOSYM - Symbol Table Detach

3-212

3

The format of the symbol table is shown below:

Upon execution of the command, the debugger performs a sanity 
check on the symbol table with the above rules. The symbol table is 
not attached if the check fails.

The NOSYM command allows you to detach a symbol table from 
the debugger.

This command is analogous to the system call .SYMBOLTD. Refer 
to Chapter 5 for the description of the system call.

Examples

Example 1: Attach symbol table at address $0001E000

PPC1-Bug>SYM 1E000 <Return>
PPC1-Bug>

Example 2:

PPC1-Bug>MD 0 <Return>
_ldchar+$0000  00010203 04050607 08090A0B 0C0D0E0F  ................
_ldchar+$0010  10111213 14151617 18191A1B 1C1D1E1F  ................
PPC1-Bug>

Example 3:

PPC1-Bug>MD _LDCHAR <RETUrn>
_ldchar+$0000  00010203 04050607 08090A0B 0C0D0E0F  ................
_ldchar+$0010  10111213 14151617 18191A1B 1C1D1E1F  ................
PPC1-Bug>

Offset Field Description

$00 Number of entries in symbol table (32 bit word).

$04 Symbol Data - Entry #0 (32 bit word)

$08 Symbol Name - Entry #0 (24 bytes)

$20 Symbol Data - Entry #1 (32 bit word)

$24 Symbol Name - Entry #1 (24 bytes)

$XX Table End (dependent on the number of entries)



SYM - Symbol Table Attach   NOSYM - Symbol Table Detach

3-213

3

Example 4:

PPC1-Bug>MD _LDCHAR+4 <Return>
_ldchar+$0004  04050607 08090A0B 0C0D0E0F 10111213  ................
_ldchar+$0014  14151617 18191A1B 1C1D1E1F 20212223  ............ !"#
PPC1-Bug>

Example 5:

PPC1-Bug>BF _LDCHAR:8 0 <Return>
Effective address: _ldchar+$0000
Effective count  : &32
PPC1-Bug>MD _LDCHAR <Return>
_ldchar+$0000  00000000 00000000 00000000 00000000  ................
_ldchar+$0010  00000000 00000000 00000000 00000000  ................
PPC1-Bug>

Example 6: Detach symbol table.

PPC1-Bug>NOSYM <Return>
PPC1-Bug>



SYMS - Symbol Table Display/Search

3-214

3

SYMS - Symbol Table Display/Search

Command Input

SYMS [symbol-name]|[;S]

Description

The SYMS command displays the attached symbol table or search 
the attached symbol table.

Specify a symbol-name to search the symbol table for a particular 
symbol. Enter a character string in symbol-name to search the 
symbol table for all of symbols that begin with the character string.

The S option displays the attached symbol table in ascending ASCII 
order. 

A symbol table must be attached for this command to execute. Refer 
to SYM - Symbol Table Attach   NOSYM - Symbol Table Detach on page 
3-211.

Examples

Example 1: Display the attached symbol table.

PPC1-Bug>SYMS <Return>
_stchar                  00001020
_ldchar                  000028A0
_sizmemory               00004930
PPC1-Bug>

Example 2: Search the attached symbol table for symbol _ldchar.

PPC1-Bug>SYMS _LDCHAR <Return>
_ldchar                  000028A0
PPC1-Bug>

Example 3: Search the attached symbol table for all symbols 
starting with _s.

PPC1-Bug>SYMS _S <Return>
_stchar                  00001020
_sizmemory               00004930
PPC1-Bug>



SYMS - Symbol Table Display/Search

3-215

3

Example 4: Display the attached symbol table in ascending ASCII 
order.

PPC1-Bug>SYMS;S <Return>
_ldchar                  000028A0
_sizmemory               00004930
_stchar                  00001020
PPC1-Bug>



T - Trace

3-216

3

T - Trace

Command Input

T [COUNT]

Description

The T command executes one instruction at a time, displaying the 
target state after execution. T starts tracing at the address in the 
target IP. 

The optional COUNT argument (which defaults to 1) specifies the 
number of instructions to be traced before returning control to the 
debugger.

Breakpoints are monitored (but not inserted) during tracing for all 
trace commands. Instruction memory must be writable. In all cases, 
if a breakpoint with 0 count is encountered, control is returned to 
the debugger.

The trace functions are implemented by inserting traps in the code. 
Therefore, the code must be writable and uncached for tracing to be 
effective.

Example

The following program resides at location $30000, and breakpoint 
is specified at location $30014.

PPC1-Bug>DS 30000 <Return>
00030000 3CA00000  ADDIS       R5,R0,$0
00030004 2B040000  CMPLI       CRF6,0,R4,$0
00030008 419A0014  BC          12,26,$0003001C
0003000C 98A30000  STB         R5,$0(R3) ($00041000)
00030010 3884FFFF  ADDI        R4,R4,$FFFFFFFF
00030014 38630001  ADDI        R3,R3,$1
00030018 4BFFFFEC  B           $00030004
0003001C 4E800020  BCLR        20,0
PPC1-Bug>



T - Trace

3-217

3

PPC1-Bug>BR <Return>
BREAKPOINTS
00030014
PPC1-Bug>

Initialize IP and R3, R4:

PPC1-Bug>RM IP <Return>
IP   =0000E000 ? 30000.<Return>
PPC1-Bug>

PPC1-Bug>RM R3 <Return>
R3     =00000000 ? 41000 <Return>
R4     =00000000 ? 100. <Return>
PPC1-Bug>

Display target registers and trace one instruction:

PPC1-Bug>RD <Return>
IP     =00030000 MSR    =00003030 CR     =00000020 FPSCR  =00000000
R0     =00000000 R1     =00020000 R2     =FFF0178C R3     =00041000
R4     =00000100 R5     =00000000 R6     =00000000 R7     =00000000
R8     =00000000 R9     =00000000 R10    =00000000 R11    =00000000
R12    =00000000 R13    =00000000 R14    =00000000 R15    =00000000
R16    =00000000 R17    =00000000 R18    =00000000 R19    =00000000
R20    =00000000 R21    =00000000 R22    =00000000 R23    =00000000
R24    =00000000 R25    =00000000 R26    =00000000 R27    =00000000
R28    =00000000 R29    =00000000 R30    =00000000 R31    =00000000
SPR0   =00000000 SPR1   =00000000 SPR8   =00020014 SPR9   =00000000
00030000 3CA00000  ADDIS       R5,R0,$0
PPC1-Bug>

PPC1-Bug>T <Return>
R0     =00000000 R1     =00020000 R2     =FFF0178C R3     =00041000
R4     =00000100 R5     =00000000 R6     =00000000 R7     =00000000
R8     =00000000 R9     =00000000 R10    =00000000 R11    =00000000
R12    =00000000 R13    =00000000 R14    =00000000 R15    =00000000
R16    =00000000 R17    =00000000 R18    =00000000 R19    =00000000
R20    =00000000 R21    =00000000 R22    =00000000 R23    =00000000
R24    =00000000 R25    =00000000 R26    =00000000 R27    =00000000
R28    =00000000 R29    =00000000 R30    =00000000 R31    =00000000
SPR0   =00000000 SPR1   =00000000 SPR8   =00020014 SPR9   =00000000
00030004 2B040000  CMPLI       CRF6,0,R4,$0
PPC1-Bug>



T - Trace

3-218

3

Trace next instruction:

PPC1-Bug> <Return>
IP     =00030008 MSR    =00003030 CR     =00000040 FPSCR  =00000000
R0     =00000000 R1     =00020000 R2     =FFF0178C R3     =00041000
R4     =00000100 R5     =00000000 R6     =00000000 R7     =00000000
R8     =00000000 R9     =00000000 R10    =00000000 R11    =00000000
R12    =00000000 R13    =00000000 R14    =00000000 R15    =00000000
R16    =00000000 R17    =00000000 R18    =00000000 R19    =00000000
R20    =00000000 R21    =00000000 R22    =00000000 R23    =00000000
R24    =00000000 R25    =00000000 R26    =00000000 R27    =00000000
R28    =00000000 R29    =00000000 R30    =00000000 R31    =00000000
SPR0   =00000000 SPR1   =00000000 SPR8   =00020014 SPR9   =00000000
00030008 419A0014  BC          12,26,$0003001C
PPC1-Bug>

Trace the next two instructions:

PPC1-Bug>T 2 <Return>
IP     =0003000C MSR    =00003030 CR     =00000040 FPSCR  =00000000
R0     =00000000 R1     =00020000 R2     =FFF0178C R3     =00041000
R4     =00000100 R5     =00000000 R6     =00000000 R7     =00000000
R8     =00000000 R9     =00000000 R10    =00000000 R11    =00000000
R12    =00000000 R13    =00000000 R14    =00000000 R15    =00000000
R16    =00000000 R17    =00000000 R18    =00000000 R19    =00000000
R20    =00000000 R21    =00000000 R22    =00000000 R23    =00000000
R24    =00000000 R25    =00000000 R26    =00000000 R27    =00000000
R28    =00000000 R29    =00000000 R30    =00000000 R31    =00000000
SPR0   =00000000 SPR1   =00000000 SPR8   =00020014 SPR9   =00000000
0003000C 98A30000  STB         R5,$0(R3) ($00041000)
IP     =00030010 MSR    =00003030 CR     =00000040 FPSCR  =00000000
R0     =00000000 R1     =00020000 R2     =FFF0178C R3     =00041000
R4     =00000100 R5     =00000000 R6     =00000000 R7     =00000000
R8     =00000000 R9     =00000000 R10    =00000000 R11    =00000000
R12    =00000000 R13    =00000000 R14    =00000000 R15    =00000000
R16    =00000000 R17    =00000000 R18    =00000000 R19    =00000000
R20    =00000000 R21    =00000000 R22    =00000000 R23    =00000000
R24    =00000000 R25    =00000000 R26    =00000000 R27    =00000000
R28    =00000000 R29    =00000000 R30    =00000000 R31    =00000000
SPR0   =00000000 SPR1   =00000000 SPR8   =00020014 SPR9   =00000000
00030010 3884FFFF  ADDI        R4,R4,$FFFFFFFF
PPC1-Bug>



T - Trace

3-219

3

Trace the next instruction:

PPC1-Bug>T <Return>
At Breakpoint
IP     =00030014 MSR    =00003030 CR     =00000040 FPSCR  =00000000
R0     =00000000 R1     =00020000 R2     =FFF0178C R3     =00041000
R4     =000000FF R5     =00000000 R6     =00000000 R7     =00000000
R8     =00000000 R9     =00000000 R10    =00000000 R11    =00000000
R12    =00000000 R13    =00000000 R14    =00000000 R15    =00000000
R16    =00000000 R17    =00000000 R18    =00000000 R19    =00000000
R20    =00000000 R21    =00000000 R22    =00000000 R23    =00000000
R24    =00000000 R25    =00000000 R26    =00000000 R27    =00000000
R28    =00000000 R29    =00000000 R30    =00000000 R31    =00000000
SPR0   =00000000 SPR1   =00000000 SPR8   =00020014 SPR9   =00000000
00030014 38630001  ADDI        R3,R3,$1
PPC1-Bug>

Note that in the breakpoint was reached (the message At 
Breakpoint  is displayed).



TA - Terminal Attach

3-220

3

TA - Terminal Attach

Command Input

TA [PORT]

Description

The TA command assigns a serial port to be the console. The port 
specified must already be assigned (refer to PF - Port Format   NOPF 
- Port Detach on page 3-178).

No prompt appears unless the selected port is already the console. 
All keyboard exchanges and displays are now made through port. 
This remains in effect until either another TA command is issued or 
the reset switch is depressed.

If no port is specified, TA restores the console to port selected at 
power-up. The prompt will appear at the connected terminal (port 
0).

Examples

Example 1: Select port 1 (logical unit #01) as console.

PPC1-Bug>TA 1 <Return>
Console = [01: PPC1- “HOST”]

Example 2: Restore console to port selected at power-up.

PPC1-Bug>TA <Return>
Console = [00: PPC1- "DEBUG"]
PPC1-Bug>



TIME - Display Time and Date

3-221

3

TIME - Display Time and Date

Command Input

TIME [;L]

Description

The TIME command displays the date and time to the console in 
ASCII characters.

Use the SET command to initialize the time-of-day clock (refer to 
SET - Set Time and Date on page 3-208).

Option L causes the date and time display to be updated 
continuously. An abort or break returns you to the debugger 
prompt. Use TIME ;L to see if the clock is running.

Example

Display the date and time:

PPC1-Bug>TIME <Return>
MON MAY 15 14:05:32.70 1995
PPC1-Bug>



TM - Transparent Mode

3-222

3

TM - Transparent Mode

Command Input

TM [PORT] [ESCAPE]

Description

The TM command connects the current console serial port to the an 
other port, allowing you to communicate with a host computer. The 
two ports remain connected until the escape character (the 
character used to exit the transparent mode) is received by the 
console port. The escape character is not transmitted to the host, 
and at power-up or reset it is initialized to $01 (CTRL- a).

The optional PORT argument allows you to specify which port is 
the host port. If omitted, port 1 is assumed.

The ports do not have to be at the same baud rate, but the console 
port baud rate should be equal to or greater than the host port baud 
rate for reliable operation. To change the baud rate use the PF (Port 
Format) command.

The optional ESCAPE argument allows you to specify the character 
to be used as the escape character. This character may be either a 
Control character (e.g., CTRL-a), or an ASCII character. The 
ESCAPE argument can be entered in one of three formats: 

If the port number is omitted and the ESCAPE argument is entered 
as a numeric value, precede the ESCAPE argument with a comma 
to distinguish it from a port number.

ESCAPE Format Sets escape to . . . Example

Hexadecimal CTRL and the 
equivalent ASCII 
character

$63 sets escape to 
CTRL-c.

^ and a character CTRL and the 
character

^c sets escape to 
CTRL-c.

Ô and a character the character Ôc sets escape to c.



TM - Transparent Mode

3-223

3

TM without any arguments displays the current escape character, 
which you must enter in order to return to the debugger.

Examples

Example 1: Display the escape character.

PPC1-Bug>TM <Return>
Escape character:  $01=^A
.
.
.
<Control-A>
PPC1-Bug>

Example 2: In this example, the default port of 1 is specified by the 
NULL PORT argument, and the escape character is set to CTRL-g.

PPC1-Bug>TM,,^g <Return>
Escape character: $07=^G
.
.
.
<Ctrl-g>
PPC1-Bug>

Example 3: In this example, $03 is specified as the port logical unit 
and the escape character is set to CTRL-b.

PPC1-Bug>TM 3 2 <Return>
Escape character: $02=^B
.
.
.
<Ctrl-b>
PPC1-Bug>



TT - Trace to Temporary Breakpoint

3-224

3

TT - Trace to Temporary Breakpoint

Command Input

TT ADDR

Description

The TT command sets a temporary breakpoint at the specified 
address and traces until a breakpoint with 0 count is encountered. 
The temporary breakpoint is then removed (TT is analogous to the 
GT command) and control is returned to the debugger. Tracing 
starts at the target IP address.

The message At Breakpoint  is displayed when a breakpoint is 
reached.

Breakpoints are monitored (but not inserted) during tracing for all 
trace commands. Instruction memory must be writable. If a 
breakpoint with 0 count is encountered, control is returned to the 
debugger.

The trace functions are implemented by inserting traps in the code. 
Therefore, the code must be writable and uncached for tracing to be 
effective.

Example

The following program resides at location $30000, and breakpoint 
is specified at location $30014.

PPC1-Bug>DS 30000 <Return>
00030000 3CA00000  ADDIS       R5,R0,$0
00030004 2B040000  CMPLI       CRF6,0,R4,$0
00030008 419A0014  BC          12,26,$0003001C
0003000C 98A30000  STB         R5,$0(R3) ($00041000)
00030010 3884FFFF  ADDI        R4,R4,$FFFFFFFF
00030014 38630001  ADDI        R3,R3,$1
00030018 4BFFFFEC  B           $00030004
0003001C 4E800020  BCLR        20,0
PPC1-Bug>



TT - Trace to Temporary Breakpoint

3-225

3

PPC1-Bug>BR <Return>
BREAKPOINTS
00030014
PPC1-Bug>

Initialize IP and R3, R4:

PPC1-Bug>RM IP <Return>
IP   =0000E000 ? 30000.<Return>
PPC1-Bug>

PPC1-Bug>RM R3 <Return>
R3     =00000000 ? 41000 <Return>
R4     =00000000 ? 100. <Return>
PPC1-Bug>

Display target registers and trace to temporary breakpoint:

PPC1-Bug>RD <Return>
IP     =00030000 MSR    =00003030 CR     =00000020 FPSCR  =00000000
R0     =00000000 R1     =00020000 R2     =FFF0178C R3     =00041000
R4     =00000100 R5     =00000000 R6     =00000000 R7     =00000000
R8     =00000000 R9     =00000000 R10    =00000000 R11    =00000000
R12    =00000000 R13    =00000000 R14    =00000000 R15    =00000000
R16    =00000000 R17    =00000000 R18    =00000000 R19    =00000000
R20    =00000000 R21    =00000000 R22    =00000000 R23    =00000000
R24    =00000000 R25    =00000000 R26    =00000000 R27    =00000000
R28    =00000000 R29    =00000000 R30    =00000000 R31    =00000000
SPR0   =00000000 SPR1   =00000000 SPR8   =00020014 SPR9   =00000000
00030000 3CA00000  ADDIS       R5,R0,$0
PPC1-Bug>

PPC1-Bug>TT 30008 <Return>
IP     =00030004 MSR    =00003030 CR     =00000000 FPSCR  =00000000
R0     =00000000 R1     =00020000 R2     =00000000 R3     =00041000
R4     =00000100 R5     =00000000 R6     =00000000 R7     =00000000
R8     =00000000 R9     =00000000 R10    =00000000 R11    =00000000
R12    =00000000 R13    =00000000 R14    =00000000 R15    =00000000
R16    =00000000 R17    =00000000 R18    =00000000 R19    =00000000
R20    =00000000 R21    =00000000 R22    =00000000 R23    =00000000
R24    =00000000 R25    =00000000 R26    =00000000 R27    =00000000
R28    =00000000 R29    =00000000 R30    =00000000 R31    =00000000
SPR0   =00000000 SPR1   =00000000 SPR8   =00000000 SPR9   =00000000
00030004 2B040000  CMPLI       CRF6,0,R4,$0
At Breakpoint
IP     =00030008 MSR    =00003030 CR     =00000040 FPSCR  =00000000
R0     =00000000 R1     =00020000 R2     =00000000 R3     =00041000



TT - Trace to Temporary Breakpoint

3-226

3

R4     =00000100 R5     =00000000 R6     =00000000 R7     =00000000
R8     =00000000 R9     =00000000 R10    =00000000 R11    =00000000
R12    =00000000 R13    =00000000 R14    =00000000 R15    =00000000
R16    =00000000 R17    =00000000 R18    =00000000 R19    =00000000
R20    =00000000 R21    =00000000 R22    =00000000 R23    =00000000
R24    =00000000 R25    =00000000 R26    =00000000 R27    =00000000
R28    =00000000 R29    =00000000 R30    =00000000 R31    =00000000
SPR0   =00000000 SPR1   =00000000 SPR8   =00000000 SPR9   =00000000
00030008 419A0014  BC          12,26,$0003001C
PPC1-Bug>



VE - Verify S-Records Against Memory

3-227

3

VE - Verify S-Records Against Memory

Command Input

VE [PORT] [ADDR] [;[X] [C]] [=text]

Options

Description

The VE command compares data to the an S-record that is in 
memory. This command is similar to the LO command, except that 
the data is compared to memory instead of being stored to memory.

The VE command accepts serial data from a host system in the form 
of a file of Motorola S-records and compares it to data already in the 
memory. If the data does not compare, then you are alerted via 
information sent to the terminal screen.

If PORT is not specified but ADDR is specified, insert two commas 
in front of ADDR. If this number is omitted, port 1 is assumed.

ADDR is an offset address which is to be added to the address 
contained in the address field of each record. This causes the 
records to be compared to memory at different locations than 
would normally occur. The contents of the automatic offset register 
are not added to the S-record addresses. (For information on S-
records, refer to Appendix D)

The optional text argument is a command that is sent to the host 
before the debugger begins to look for S-records at the host port. 
This allows you to send a command to the host device to initiate the 
download. This text should not be delimited by any quote marks, 

C Ignore checksum. A checksum for the data contained within an S-
Record is calculated as the S-Record is read in at the port. 
Normally, this calculated checksum is compared to the checksum 
contained within the S-Record and if the compare fails an error 
message is sent to the screen on completion of the download. If 
this option is selected, then the comparison is not made. 

X Echo the S-records to your terminal as they are read in at the host 
port 



VE - Verify S-Records Against Memory

3-228

3

and should begin immediately following the equals sign, and 
terminate with the carriage return. If the host is operating full 
duplex, the string is also echoed back to the host port by the host 
and appears on your terminal screen.

In order to accommodate host systems that echo all received 
characters, the above-mentioned text string is sent to the host one 
character at a time and characters received from the host are read 
one at a time. After the entire command has been sent to the host, 
VE keeps looking for an <LF> character from the host, signifying 
the end of the echoed command. No data records are processed 
until this <LF> is received. If the host system does not echo 
characters, VE still keeps looking for an <LF> character before data 
records are processed. For this reason, it is required in situations 
where the host system does not echo characters, that the first record 
transferred by the host system be a header record. The header 
record is not used, but the <LF> after the header record serves to 
break VE out of the loop so that data records are processed.

During a verify operation, data from an S-record is compared to 
memory beginning with the address contained in the S-record 
address field (plus the offset address, if it was specified). If the 
verification fails, then the non-comparing record is set aside until 
the verify is complete and then it is printed out to the screen. If three 
non-comparing records are encountered in the course of a verify 
operation, then the command is aborted.

If a non-hexadecimal character is encountered within the data field 
of a data record, then the part of the record which had been received 
up to that time is printed to the screen and the PPCBug error 
handler is invoked to point to the faulty character.

As mentioned, if the embedded checksum of a record does not 
agree with the checksum calculated by PPCBug and if the 
checksum comparison has not been disabled via the C option, then 
an error condition exists. A message is output stating the address of 
the record (as obtained from the address field of the record), the 
calculated checksum, and the checksum read with the record. A 
copy of the record is also output. This is a fatal error and causes the 
command to abort.



VE - Verify S-Records Against Memory

3-229

3

Example

For the example, assume that the program has been compiled and 
linked to start at address 65040000.

        .file   “test.s”
#
# retrieve contents of the RTC registers
#
        .toc
T.FD:   .tc     FD.4330000080000000[tc] ,1127219200,-2147483648
        .toc
T..test:
        .tc     ..test[tc], test[ds]
T..LDATA:
        .tc     ..LDATA[tc], .LDATA
T..LRDATA:
        .tc     ..LRDATA[tc], .LRDATA
#
        .align  2
        .globl  test[ds]
        .csect  test[ds]
        .long   .test[pr], TOC[tc0], 0
        .globl  .test[pr]
        .csect  .test[pr]
.test:
        mfspr   r4,4            # load RTC upper register
        stw     r4,0(r3)        # write to caller’s buffer
        mfspr   r4,5            # load RTC lower register
        stw     r4,4(r3)        # write to caller’s buffer
        bclr    0x14,0x0        # return to the caller
FE_MOT_RESVD.test:
        .csect  [rw]
        .align  2
.LDATA:
        .csect  [rw]
        .align  2
.LRDATA:

Then the program is converted into an S-record file named test.mx 
as follows:

S325650400007C8402A6908300007C8502A6908300044E80002000000000650400006504002412
S30D65040020000000000000000069
S7056504000091



VE - Verify S-Records Against Memory

3-230

3

This file is downloaded into memory at address $40000. The 
program may be examined in memory using the MD command.

PPC1-Bug>MD 40000:5;DI <Return>
00040000 7C8402A6  MFSPR       R4,4
00040004 90830000  STW         R4,$0(R3) ($00041000)
00040008 7C8502A6  MFSPR       R4,5
0004000C 90830004  STW         R4,$4(R3) ($00041004)
00040010 4E800020  BCLR        20,0
PPC1-Bug>

Suppose you want to make sure that the program has not been 
destroyed in memory. The VE command is used to perform a 
verification.

PPC1-Bug>VE ,,-65000000;X=cat test.mx <Return>
cat test.mx
S325650400007C8402A6908300007C8502A6908300044E80002000000000650400006504002412
S30D65040020000000000000000069
S7056504000091
Verify passes.
PPC1-Bug>

The verification passes. The program stored in memory was the 
same as that in the S-record file that had been downloaded.

Now change the program in memory and perform the verification 
again.

PPC1-Bug>MM 40004;H <Return>
00040004 9083? 9082. <Return>
PPC1-Bug>

PPC1-Bug>VE ,,-65000000;X=cat test.mx <Return>
cat test.mx
S325650400007C8402A69083
S-RECORD Data Verification error:
Address       =00040005
Expected data =83
Actual data   =82
S-RECORD=
S325650400007C8402A69083
PPC1-Bug>

The byte which was changed in memory does not compare with the 
corresponding byte in the S-record.



VER - Revision/Version Display

3-231

3

VER - Revision/Version Display

Command Input

VER [;E]

Description

The VER command displays the various revisions and versions of 
the host's hardware subsystems. The command displays the 
revision and date of PPCBug that is running.

The E option displays more detail, such as PCI configuration 
headers for each device, which can be used for 
components/subsystems that may have lengthy data arrays 
associated with their identification. Such a data array would be 
displayed as a memory dump.

Refer to the appropriate device manual to translate the physical 
revision/version to its logical revision/version.

Examples

Example 1: 

PPC1-Bug>VER <Return>
Debugger/Diagnostics Type/Revision..................=PPC1/x.x
Debugger/Diagnostics Revision Date..................=XX/XX/XX RMXX
MicroProcessor Version/Revision.....................=0008/0201
MicroProcessor Internal Clock Speed (MHZ)...........=233
MicroProcessor External Clock Speed (MHZ)...........=67
CPU Type/System ID/CPU Subtype......................=E0/FC/00
PCI Bus Clock Speed (MHZ)...........................=33
Local Memory Size...................................=02000000 (32MB)
L2 Cache (External).................................=NONE
L2 Cache (P0-In-Line)...............................=1MB
L2 Cache (P1-In-Line)...............................=N/A
Super I/O Device Offset/ID Revision.................=02E/C0/7
PCI Bus Bridge Device ID/Revision...................=00011057/21
PCI Device (80800800) ID/Revision...................=05861106/33
PCI Function 00/0B/1 (00005900) ID/Revision.........=05711106/06



VER - Revision/Version Display

3-232

3

PCI Function 00/0B/2 (00005A00) ID/Revision.........=30381106/02
PCI Function 00/0B/3 (00005B00) ID/Revision.........=30401106/02
PCI Function 00/0E/0 (00007000) ID/Revision.........=00091011/20
PCI Function 00/10/0 (00008000) ID/Revision.........=00B81013/00
PCI Function 00/14/0 (0000A000) ID/Revision.........=00261011/01
PCI Function 01/0D/0 (00016800) ID/Revision.........=70789004/03
PCI Function 01/0F/0 (00017800) ID/Revision.........=00211011/02
PCI Function 02/08/0 (00024000) ID/Revision.........=00031000/02
PCI Function 02/0D/0 (00026800) ID/Revision.........=0091011/22
PPC1-Bug>

Example 2: 

PPC1-Bug>VER ;E <Return>
Debugger/Diagnostics Type/Revision..................=PPC1/X.X
Debugger/Diagnostics Revision Date..................=XX/XX/XX RMXX
MicroProcessor Version/Revision.....................=0008/0201
MicroProcessor Internal Clock Speed (MHZ)...........=233
MicroProcessor External Clock Speed (MHZ)...........=67
CPU Type/System ID/CPU Subtype......................=E0/FC/00
PCI Bus Clock Speed (MHZ)...........................=33
Local Memory Size...................................=02000000 (32MB)
L2 Cache (External).................................=NONE
L2 Cache (P0-In-Line)...............................=1MB
L2 Cache (P1-In-Line)...............................=N/A
Super I/O Device Offset/ID Revision.................=02E/C0/7
PCI Bus Bridge Device ID/Revision...................=48011057/01
PCI Bus Bridge Device Registers
Class: Built before Class definitions  Subclass: Non VGA device
Base+$0000 48 01 10 57 22 80 00 06 06 00 00 01 00 00 00 00 H..W”..........
Base+$0010 00 00 00 01 3C 00 00 00 00 00 00 00 00 00 00 00 ..............
Base+$0020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..............
Base+$0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..............
Base+$0040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..............
Base+$0050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..............
Base+$0060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..............
Base+$0070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..............
Base+$0080 80 00 81 FE 80 00 00 F3 81 FF 81 FF 80 00 00 E3 ..............
Base+$0090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..............
Base+$00A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..............
Base+$00B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..............
Base+$00C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..............
Base+$00D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..............
Base+$00E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..............
Base+$00F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..............

Press "RETURN" to continue  <Return>



VER - Revision/Version Display

3-233

3

PCI Function 00/0B/0 (0005800) ID/Revision..........=05861106/33
Class:Bridge Device Subclass: PCI/ISA Bridge
Base+$0000  05 86 11 06 02 00 00 07 06 01 00 33 00 80 00 00  ............3.
Base+$0010  01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ...............
Base+$0020  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ...............
Base+$0030  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ...............

Press "RETURN" to continue  <Return>

PCI Function 00/0B/1 (00005900) ID/Revision..........=05711106/06
Class:Mass Storage Controller Subclass: IDE Controller
Base+$0000 05 71 11 06 02 80 00 85 01 01 8F 06 00 00 00 00  H..W...........
Base+$0010 00 00 FF F9 00 00 FF F5 00 00 FF E9 00 00 FF E5................
Base+$0020 00 00 FF D1 00 00 00 00 00 00 00 00 00 00 00 00 ................
Base+$0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 0E ................

Press "RETURN" to continue  <Return>

PCI Function 00/0B/2 (00005A00) ID/Revision.........=30381106/02
Class: Serial Bus Controller  Subclass: Universal Serial Bus
Base+$0000 30 38 11 06 02 00 00 05  0C 03 00 02 00 00 16 08 08.."..........
Base+$0010 00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 ..@............
Base+$0020 00 00 FF A1 00 00 00 00  00 00 00 00 12 34 09 25 .............4%
Base+$0030 00 00 00 00 00 00 00 00  00 00 00 00 00 00 04 0B ...............

Press "RETURN" to continue  <Return>

PCI Function 00/0B/3 (00005B00) ID/Revision..........=30401106/02
Class: Built before Class definitions Subclass: Non VGA device

Base+$0000 30 40 11 06 02 80 00 00  00 00 00 02 00 00 00 00 0@.............
Base+$0010 00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 ...............
Base+$0020 00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 ...............
Base+$0030 00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 ................

Press "RETURN" to continue  <Return>

PCI Function 00/0E/0 (00007000) ID/Revision..........=00091011/20
Class: Network Controller Subclass: Ethernet Controller

Base+$0000 00 09 10 11 02 80 00 07 02 00 00 20 00 00 00 00 ...............
Base+$0010 3F 7F FF 81 3B FF FF 80 00 00 00 00 00 00 00 00 .?.............
Base+$0020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ...............
Base+$0030 5D 7C 00 00 00 00 00 00 00 00 00 00 28 14 01 0A ]|..............

Press "RETURN" to continue  <Return>

PCI Function 00/10/0 (00008000) ID/Revision..........=008B1013/00
Class: Display Controller Subclass:VGA-compatible Controller

Base+$0000 00 B8 10 13 02 00 00 00 03 00 00 00 00 00 00 00 ...............
Base+$0010 FF 00 00 08 FF FF FF E1 00 00 00 00 00 00 00 00 ...............
Base+$0020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ...............
Base+$0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 05 ................

Press "RETURN" to continue  <Return>



VER - Revision/Version Display

3-234

3

PCI Function 00/14/0 (0000A000) ID/Revision..........=00261011/01
Class: Bridge Device Subclass:PCI/PCI Bridge

Base+$0000 00 26 10 11 02 80 00 07 06 04 00 01 00 01 80 08 .&.............
Base+$0010 00 00 00 00 00 00 00 00 80 02 01 00 22 80 E1 D1 ...............
Base+$0020 3B E0 3B D0 00 01 FF F1 FF FF FF FF 00 00 00 00 ...............
Base+$0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ...............

Press "RETURN" to continue  <Return>

PCI Function 00/0D/0 (00016800) ID/Revision..........=70789004/03
Class: Mass Storage Controller Subclass: SCSI Controller

Base+$0000 70 78 90 04 02 80 00 07 01 00 00 03 00 00 00 08 px.............
Base+$0010 00 00 EF 01 3B EF F0 00 00 00 00 00 00 00 00 00 ...............
Base+$0020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ...............
Base+$0030 00 00 00 00 00 00 00 00 00 00 00 00 08 08 01 FF ................

Press "RETURN" to continue  <Return>

PCI Function 01/0F/0 (00017800) ID/Revision..........=00211011/02
Class: Bridge Device Subclass: PCI/PCI Bridge

Base+$0000 00 21 10 11 02 80 00 07 06 04 00 02 00 01 80 08 .!.............
Base+$0010 00 00 00 00 00 00 00 00 80 02 02 01 02 80 D0 D0 ...............
Base+$0020 3B D0 3B D0 00 00 FF F0 00 00 00 00 00 00 00 00 ...............
Base+$0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

Press "RETURN" to continue  <Return>

PCI Function 02/08/0 (00024000) ID/Revision..........=00031000/02
Class: Mass Storage Controller Subclass: SCSI Controller

Base+$0000 00 03 10 00 02 00 00 07 01 00 00 02 00 00 80 00 ...............
Base+$0010 00 00 DF 01 3B DF FF 00 00 00 00 00 00 00 00 00 ...............
Base+$0020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ...............
Base+$0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 FF ................

Press "RETURN" to continue  <Return>

PCI Function 02/0D/0 (00026800) ID/Revision..........=00091011/22
Class: Network Controller Subclass: Ethernet Controller

Base+$0000 00 09 10 11 02 80 00 07 02 00 00 22 00 00 00 08 ...........”...
Base+$0010 00 00 DE 81 3B DF FE 80 00 00 00 00 00 00 00 00 ...............
Base+$0020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ...............
Base+$0030 40 00 00 00 00 00 00 00 00 00 00 00 28 14 01 FF @...............

Press "RETURN" to continue  <Return>

PPC1-Bug>



WL - Write Loop

3-235

3

WL - Write Loop

Command Input

WL ADDR:DATA[;B|H|W]

Options

Description

The WL command establishes an infinite loop consisting of a 
processor store instruction, DATA, targeted to the given ADDR and 
of the given length, followed by a branch instruction back to the 
store. The defined DATA is therefore stored repeatedly into the 
defined location in rapid succession.

The write loop can only be terminated by an external occurrence, 
such as an interrupt (usually an abort), a reset from the RESET 
switch, or power cycle.

B Byte

H Half-word

W Word





PPCBug
Firmware Package

User’s Manual
Part 2 of 2

PPCBUGA2/UM4



Notice

While reasonable efforts have been made to assure the accuracy of this document, 
Motorola, Inc. assumes no liability resulting from any omissions in this document, 
or from the use of the information obtained therein. Motorola reserves the right to 
revise this document and to make changes from time to time in the content hereof 
without obligation of Motorola to notify any person of such revision or changes.

No part of this material may be reproduced or copied in any tangible medium, or 
stored in a retrieval system, or transmitted in any form, or by any means, radio, 
electronic, mechanical, photocopying, recording or facsimile, or otherwise, 
without the prior written permission of Motorola, Inc.

It is possible that this publication may contain reference to, or information about 
Motorola products (machines and programs), programming, or services that are 
not announced in your country. Such references or information must not be 
construed to mean that Motorola intends to announce such Motorola products, 
programming, or services in your country.

Restricted Rights Legend

If the documentation contained herein is supplied, directly or indirectly, to the U.S. 
Government, the following notice shall apply unless otherwise agreed to in 
writing by Motorola, Inc.

Use, duplication, or disclosure by the Government is subject to restrictions as set 
forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer 
Software clause at DFARS 252.227-7013.

Motorola, Inc.
Computer Group

2900 South Diablo Way
Tempe, Arizona 85282



Preface

The PPCBug Firmware Package UserÕs Manual provides information on the PPCBug 
Þrmware, the start-up and boot routines, the debugger commands, the one-line 
assembler/disassembler, and the debugger system calls. All information 
contained herein is speciÞc to MotorolaÕs PowerPCª-based boards: MVME230x 
VME Processor Modules, MVME260x Single Board Computers, MVME360x VME 
Processor Modules, MVME460x VME Dual Processor Modules, MTX Embedded 
ATX Motherboards, MCP750 CompactPCI, and PMCspan PCI expansion boards. 
In this manual, they are collectively referred to as the PowerPC board or board.

This manual covers release 3.4, and earlier versions, of PPC1Bug.

This document is bound in two parts. Part 1 (PPCBUGA1/UM4) contains the Table 
of Contents, List of Figures, List of Tables, and Chapters 1 through 3. Part 2 
(PPCBUGA2/UM4) contains Chapters 4 and 5, Appendixes A through H, and the 
Index. 

The diagnostics are covered in the PPCBug Diagnostics Manual (PPC1DIAA/UM2).

A basic knowledge of computers and digital logic is assumed. Refer to Appendix 
A, Related Documentation, of this manual for a list of documents that may provide 
helpful information.

This manual is intended for anyone who designs OEM systems, supplies 
additional capability to an existing compatible system, or works in a lab 
environment for experimental purposes.

Motorola¨ and the Motorola symbol are registered trademarks of Motorola, Inc.

PowerStack is a trademark of Motorola, Inc.

PowerPCª is a trademark of IBM, and is used by Motorola with permission.

AIXTM is a trademark of IBM Corp.

All other products mentioned in this document are trademarks or registered 
trademarks of their respective holders.



Conventions

The following conventions are used in this document:

bold
is used for user input that you type just as it appears. Bold is also used for
commands, options and arguments to commands, and names of programs,
directories, and files.

italic
is used for names of variables to which you assign values. Italic is also used
for comments in screen displays and examples.

courier

is used for system output (e.g., screen displays, reports), examples, and
system prompts.

<Return> or Ôthe Return keyÕ
represents the Enter, Return, or Carriage Return key.

CTRL
represents the Control key. Execute control characters by pressing the
CTRL key and the letter simultaneously, e.g., CTRL-d.

|
Separates two or more items that you may select from (one only).

[ ]
encloses an optional item that may occur zero or one time.

{ }
encloses an optional item that may occur zero or more times.

A character precedes a data or address parameter to specify the numeric format, 
as follows (if not specified, the format is hexadecimal):

$ dollar
a hexadecimal character. 

0x Zero-x

% percent a binary number.

& ampersand a decimal number.



Safety Summary
Safety Depends On You

The following general safety precautions must be observed during all phases of operation, service, and
repair of this equipment. Failure to comply with these precautions or with speciÞc warnings elsewhere in
this manual violates safety standards of design, manufacture, and intended use of the equipment.
Motorola, Inc. assumes no liability for the customer's failure to comply with these requirements. 
The safety precautions listed below represent warnings of certain dangers of which Motorola is aware. You,
as the user of the product, should follow these warnings and all other safety precautions necessary for the
safe operation of the equipment in your operating environment.

Ground the Instrument.
To minimize shock hazard, the equipment chassis and enclosure must be connected to an electrical ground.
The equipment is supplied with a three-conductor ac power cable. The power cable must be plugged into
an approved three-contact electrical outlet. The power jack and mating plug of the power cable meet
International Electrotechnical Commission (IEC) safety standards.

Do Not Operate in an Explosive Atmosphere.
Do not operate the equipment in the presence of ßammable gases or fumes. Operation of any electrical
equipment in such an environment constitutes a deÞnite safety hazard.

Keep Away From Live Circuits.
Operating personnel must not remove equipment covers. Only Factory Authorized Service Personnel or
other qualiÞed maintenance personnel may remove equipment covers for internal subassembly or
component replacement or any internal adjustment. Do not replace components with power cable
connected. Under certain conditions, dangerous voltages may exist even with the power cable removed. To
avoid injuries, always disconnect power and discharge circuits before touching them.

Do Not Service or Adjust Alone.
Do not attempt internal service or adjustment unless another person capable of rendering Þrst aid and
resuscitation is present.

Use Caution When Exposing or Handling the CRT.
Breakage of the Cathode-Ray Tube (CRT) causes a high-velocity scattering of glass fragments (implosion).
To prevent CRT implosion, avoid rough handling or jarring of the equipment. Handling of the CRT should
be done only by qualiÞed maintenance personnel using approved safety mask and gloves.

Do Not Substitute Parts or Modify Equipment.
Because of the danger of introducing additional hazards, do not install substitute parts or perform any
unauthorized modiÞcation of the equipment. Contact your local Motorola representative for service and
repair to ensure that safety features are maintained.

Dangerous Procedure Warnings.
Warnings, such as the example below, precede potentially dangerous procedures throughout this manual.
Instructions contained in the warnings must be followed. You should also employ all other safety
precautions which you deem necessary for the operation of the equipment in your operating environment.

!
WARNING

Dangerous voltages, capable of causing death, are present in this
equipment. Use extreme caution when handling, testing, and
adjusting. 



The computer programs stored in the Read Only Memory of this device contain 
material copyrighted by Motorola Inc., 1995, 1996, and 1997, and may be used only 
under a a license such as those contained in MotorolaÕs software licenses.

The software described herein and the documentation appearing herein are 
furnished under a license agreement and may be used and/or disclosed only in 
accordance with the terms of the agreement.

The software and documentation are copyrighted materials. Making unauthorized 
copies is prohibited by law. No part of the software or documentation may be 
reproduced, transmitted, transcribed, stored in a retrieval system, or translated 
into any language or computer language, in any form or by any means without the 
prior written permission of Motorola, Inc.

Disclaimer of Warranty
Unless otherwise provided by written agreement with Motorola, Inc., the software 
and the documentation are provided on an Òas isÓ basis and without warranty. 
This disclaimer of warranty is in lieu of all warranties whether express, implied, or 
statutory, including implied warranties of merchantability or Þtness for any 
particular purpose.

!
WARNING

This equipment generates, uses, and can radiate electro-
magnetic energy. It may cause or be susceptible to electro-
magnetic interference (EMI) if not installed and used in a
cabinet with adequate EMI protection.

© Copyright Motorola, Inc. 1996, 1997
All Rights Reserved

Printed in the United States of America
December 1997



4

4-1

4One-Line Assembler/
Disassembler

Introduction
The PPCBug one-line assembler is an interactive assembler/editor 
in which the source program is not saved. Each source line is 
translated into the proper PowerPC machine language code and is 
stored in memory on a line-by-line basis at the time of entry. In 
order to display an instruction, the machine code is disassembled, 
and the instruction mnemonic and operands are displayed. All 
valid PowerPC instructions are translated.

The assembler is effectively a subset of an operating system 
assembler. It has some limitations as compared with the operating 
system assembler, such as not allowing line numbers, pseudo ops, 
instruction macros, and label. However, it is a powerful tool for 
creating, modifying, and debugging code written in PowerPC 
assembly language.

PowerPC Assembly Language
The symbolic language used to code source programs for 
processing by the assembler is PowerPC assembly language. This 
language is a collection of mnemonics representing:

❏ Operations

Ð (PowerPC machine-instruction operation codes, 
Directives (pseudo-ops))

Ð Operators

❏ Special symbols



Comparison with the Standard Assembler

4-2

4

Machine-Instruction Operation Codes

Refer to PowerPC 603 RISC Microprocessor UserÕs Manual, PowerPC 
604 RISC Microprocessor UserÕs Manual, or the PowerPC MCP750 
RISC Microprocessor UserÕs Manual for information on the 
mnemonic machine instruction operation codes.

Directives

The PPCBug one-line assembler recognizes only two mnemonic 
directives: to define a word constant (WORD), and system call 
(SYSCALL). These directives are used to define data within the 
program, and to make calls on PPCBug utilities. Refer to WORD 
Define Constant Directive on page 4-9 and SYSCALL System Call 
Directive on page 4-10 for further details.

Comparison with the Standard Assembler
There are several major differences between the PPCBug one-line 
assembler and the PowerPC Standard Assembler. The PowerPC 
assembler is a two-pass assembler that processes an entire program 
as a unit, while the PPCBug one-line assembler processes each line 
of a program as an individual unit. Because of this, the capabilities 
of the PPCBug one-line assembler are more restricted, as described 
below:

❏ Label and line numbers are not used. Labels are used to 
reference other lines and locations in a program. The one-line 
assembler has no knowledge of other lines and, therefore, 
cannot make the required association between a label and the 
label definition located on a separate line.

❏ Source lines are not saved. In order to read back a program 
after it has been entered, the machine code is disassembled 
and then displayed as mnemonic and operands.

❏ Only two directives (WORD and SYSCALL) are accepted.

❏ No macro operation capability is included.



One-Line Assembler/ Disassembler

4-3

4

❏ No conditional assembly is used.

❏ Several symbols recognized by the resident assembler are not 
included in the PPCBug one-line assembler character set.

❏ Depending on the context, the ampersand (&) has multiple 
meanings to the resident assembler (refer to Addressing Modes 
on page 4-8). The & is either the AND logical operator or a 
decimal number prefix. 

❏ Depending on the context, the asterisk (*) has multiple 
meanings to the resident assembler (refer to Addressing Modes 
on page 4-8). The * is either the multiplication operator or the 
current value of the program counter.

Although functional differences exist between the two assemblers, 
the PPCBug one-line assembler is a true subset of the resident 
assembler. The format and syntax used with the PPCBug one-line 
assembler are acceptable to the resident assembler except as 
described above.

Source Program Coding
A source program is a sequence of source statements arranged in a 
logical way to perform a predetermined task. Each source 
statement occupies a line and must be either an executable 
instruction, or a WORD assembler directive. Each source statement 
follows a consistent source line format.

Source Line Format

Each source statement is a combination of operation and, as 
required, operand fields. Line numbers, labels, and comments are 
not used.



Source Program Coding

4-4

4

Operation Field

Because there is no label field, the operation field may begin in the 
first available column. It may also follow one or more spaces. 
Entries can consist of one of two categories:

❏ Operation codes which correspond to the MPC60x 
instruction set.

❏ Define Constant directive -- WORD is recognized to define a 
constant in a word location.

The size of the data field affected by an instruction is determined by 
the data size codes. Some instructions and directives can operate on 
more than one data size. For these operations, the data size code 
must be specified or a default size applicable to that instruction will 
be assumed. The size code need not be specified if only one data 
size is permitted by the operation. Refer to the PowerPC 603 RISC 
Microprocessor User's Manual, the PowerPC 604 RISC Microprocessor 
User's Manual, or the PowerPC MPC750 RISC Microprocessor UserÕs 
Manual section on Instructions for a definition of allowable size 
codes.

The data size code is not permitted, however, when the instruction 
or directive does not have a data size attribute.

Operand Field

If present, the operand field follows the operation field and is 
separated from the operation field by at least one space. When two 
or more operand subfields appear within a statement, they must be 
separated by a comma.

Disassembled Source Line

The disassembled source line may not look identical to the source 
line entered. The disassembler makes a decision on how it 
interprets the numbers used. If the number is an offset from a 
register, it is treated as a signed hexadecimal offset. Otherwise, it is 
treated as a straight unsigned hexadecimal.



One-Line Assembler/ Disassembler

4-5

4

Mnemonics and Delimiters

The assembler recognizes all PowerPC instruction mnemonics. 

Numbers are recognized as binary, octal, decimal, and 
hexadecimal, with hexadecimal the default case. Numbers may be 
represented only as integers; floating point representations are not 
supported. The following formats are acceptable:

An ASCII string is made up of one or more ASCII characters 
enclosed by apostrophes (' '). ASCII strings are right-justified and 
zero-filled (if necessary), whether stored or used as immediate 
operands.

The following register mnemonics are recognized/referenced by 
the assembler/disassembler:

Pseudo-Registers:

Main Processor Registers:

Note that the processor registers that are not listed here are still 
accessible, but instead of the register being denoted by a name, it is 
denoted by a number with a specific instruction mnemonic. 

Decimal a string of decimal digits (0 through 9) 
preceded by an ampersand (&)
For example &12334 or -&987654321

Hexadecimal a string of hexadecimal digits (0 through 9, A 
through F) preceded by an optional dollar sign 
($). For example, $AFE5

Z0-Z7 User Offset Registers - These are only 
recognized during the assembly/disassembly 
of target addresses (branch instructions).

R0-R31 General Purpose Registers

FR0-FR31 Floating Point Unit Data Registers

CRB0-CRB31 Condition Register Bit Field (CR/FPSCR)

CRF0-CRF7 Condition Register Field (FPSCR)



Source Program Coding

4-6

4

Instructions

The following is a list of the instruction fields and their default 
number bases:

CRBA Decimal

CRBB Decimal

BD Signed Hexadecimal

CRFD Decimal

CRFS Decimal

BI Decimal

BO Decimal

CRBD Decimal

D Signed Hexadecimal

DS Signed Hexadecimal

FM Hexadecimal

FRA Decimal

FRB Decimal

FRC Decimal

FRS Decimal

FRD Decimal

CRM Hexadecimal

L Decimal

LI Signed Hexadecimal

MB Decimal

ME Decimal

NB Decimal

RA Decimal

RB Decimal

RS Decimal

RD Decimal

SH Decimal

SIMM Signed Hexadecimal



One-Line Assembler/ Disassembler

4-7

4The assembly/disassembly format of the instruction mnemonics 
and operands follow the syntax specified in the PowerPC 603 RISC 
Microprocessor UserÕs Manual or PowerPC 604 RISC Microprocessor 
UserÕs Manual. The required fields are in boldface type, and the 
variable fields are not, fields being one or more characters in length.

Character Set

The character set recognized by the PPCBug one-line assembler is a 
subset of ASCII, and these are listed as follows:

SPR Decimal

TO Decimal

IMM Decimal

UIMM Hexadecimal

Letters A through Z (uppercase and lowercase)

Integers 0 through 9

Arithmetic operators: + - * / << >> ! & % ^

Parentheses ( )

Characters used as special preÞxes:

dollar sign ($) speciÞes a hexadecimal number

ampersand (&) speciÞes a decimal number

at sign (@) speciÞes an octal number

percent sign(%) speciÞes a binary number

apostrophe (Ô) speciÞes an ASCII literal character string

Separating characters:

space

comma (,)

period (.)

slash (/)

dash (-)

* (asterisk); indicates the current instruction pointer value



Source Program Coding

4-8

4

Addressing Modes
Effective address modes, combined with operation codes, define 
the particular function to be performed by a given instruction. 
Effective addressing and data organization are described in detail 
in the section on Addressing Modes and Instruction Set in the PowerPC 
603 RISC Microprocessor User's Manual or PowerPC 604 RISC 
Microprocessor User's Manual.

You may use an expression in any numeric field of these addressing 
modes. The assembler has a built-in expression evaluator. It 
supports the following operand types:

Allowed operators are:

Binary numbers %10

Octal numbers @765 . . 0

Decimal numbers &987 . . 0

Hexadecimal numbers $FED . . 0

String literals 'foo' 

Offset registers Z0 - Z7

Instruction pointer *

Addition + (plus)

Subtraction - (minus)

Multiply * (asterisk)

Divide / (slash)

Shift left << (left angle brackets)

Shift right >> (right angle brackets)

Bitwise OR ! (exclamation mark)

Bitwise AND & (ampersand)

Modulus % (percent)

Exponential ^ (circumßex)

One's Complement ~ (tilde)



One-Line Assembler/ Disassembler

4-9

4

The order of evaluation is strictly left to right with no precedence 
granted to some operators over others. The only exception to this is 
when you force the order of precedence through the use of 
parenthesis.

The order of parsing algebraic expressions is:

OPERAND OPERATOR OPERAND OPERATOR...

with a possible left or right parenthesis.

The parsing order allows the assembler to properly interpret 
characters. For example, the Ò*Ó which represents both multiply 
and instruction pointer, is interpreted as:

WORD Define Constant Directive
The format for the WORD directive is:

WORD 32-bit-operand

The function of this directive is to define a constant in memory. The 
WORD directive can have only one operand (32-bit value) which 
can contain the actual value (decimal, hexadecimal, or ASCII). 
Alternatively, the operand can be an expression which can be 
assigned a numeric value by the assembler. An ASCII string is 
recognized when characters are enclosed inside single quotes (' '). 
Each character (seven bits) is assigned to a byte of memory, with the 
eighth bit (MSB) always equal to zero. If only one byte is entered, 
the byte is right justified. Any number of ASCII characters may be 
entered for each WORD directive, and the characters are right 
justified, but truncation occurs after four characters.

*** IP * IP

*+* IP + IP

2** 2 * IP

*&&16 IP AND &16



Source Program Coding

4-10

4

An ASCII string which contains spaces may not be used as an 
argument to the WORD directive, even if the string is enclosed 
inside single quotes. In this case, the mm command may be used in 
place of the assembler's WORD directive. Note that to use mm, the 
one-line assembler must be exited.

The following example illustrates the Assembler Error which will 
occur if the user attempts to enter a string containing spaces using 
the WORD directive. Following the error is an example of the use 
of the mm command to put the string into memory instead.
PPC1-Bug>as 80000

user enters WORD 'abcd', which works Þne
00080000 61626364  ORI         R2,R11,$6364                    

user enters WORD 'ab d', which is invalid
00080004 00000000  WORD        $00000000? WORD 'ab d'
Assembler Error: Operand Conversion

exit the one-line assembler
00080004 00000000  WORD        $00000000? .

use mm command instead
PPC1-Bug>mm 80004 
00080004 00000000? 'ab d'
00080008 00000000? .
verify this using md command

PPC1-Bug>md 80000:4
00080000  61626364 61622064 00000000 00000000  abcdab d........

SYSCALL System Call Directive
The function of this directive is to aid you in making the 
appropriate system call entry to the debugger system call routines. 
The format for this directive is:

SYSCALL <.ROUTINE>

This is assembled as:

ADDI R10,R0, $XXXX

SC

Where $XXXX is the 16-bit code for the system call routine.



One-Line Assembler/ Disassembler

4-11

4

Refer to Chapter 5, System Calls, for information on the system call routines.

Entering and Modifying Source Programs
User programs are entered into the memory using the one-line 
assembler/ disassembler. The program is entered in assembly 
language statements on a line-by-line basis. The source code is not 
saved as it is converted immediately to machine code upon entry. 
This imposes several restrictions on the type of source line that can 
be entered.

Symbols and labels, other than the defined instruction mnemonics, 
are not allowed. The assembler has no means to store the associated 
values of the symbols and labels in lookup tables. This forces the 
programmer to use memory addresses and to enter data directly 
rather than use labels.

Also, editing is accomplished by retyping the entire new source 
line. Lines can be added or deleted by moving a block of memory 
data to free up or delete the appropriate number of locations (refer 
to the BM command in Chapter 3).

Invoking the Assembler/Disassembler
Use either the MM command or the AS command for program 
entry and modification. 

MM ADDR ;DI

or

AS ADDR

When either the MM or AS command is used, the memory contents 
at the specified location are disassembled and displayed. A new or 
modified line can be entered if desired. The disassembled line can 
be a PowerPC instruction or a WORD directive. If the disassembler 
recognizes a valid form of some instruction, the instruction will be 
returned; if not (random data occurs), the WORD $XXXXXXXX 



Entering and Modifying Source Programs

4-12

4

(always hexadecimal) is returned. Because the disassembler gives 
precedence to instructions, a word of data that corresponds to a 
valid instruction will be returned as the instruction.

Entering a Source Line
A new source line is entered immediately following the 
disassembled line, using the format discussed in the section on 
Source Line Format:

PPC1-Bug>AS 20000 <CR>
00020000 3C600004  ADDIS       R3,R0,$4? ORI R3,R0,4 <CR>

When the carriage return is entered terminating the line, the old 
source line is erased from the terminal screen, the new line is 
assembled and displayed, and the next instruction in memory is 
disassembled and displayed.

00020000 60030004  ORI         R3,R0,$4
00020004 60631000  ORI         R4,R4,$1000? <Return>

If a printer is being used, port 0 should be reconfigured as the 
printer port (hardcopy mode) for proper operation (refer to the PF 
command in Chapter 3). In this case, the above example would look 
as follows:

PPC1-Bug>AS 20000 <Return>
00020000 3C600004  ADDIS       R3,R0,$4? ORI R3,R0,4 <Return>
00020000 60030004  ORI         R3,R0,$4
00020004 60631000  ORI         R4,R4,$1000? <CR>

Another program line can now be entered. Program entry 
continues in like manner until all lines have been entered. 

Enter a period to exit either the MM or AS command.

If an error is encountered during assembly of the new line, an error 
message will be displayed. The location being accessed is 
redisplayed.

PPC1-Bug>AS 30000 <CR>
00030000 3CA00000  ADDIS       R5,R0,$0? ORU R5,R0,1 <Return>
Assembler Error: Unknown Mnemonic
00030000 3CA00000  ADDIS       R5,R0,$0?



One-Line Assembler/ Disassembler

4-13

4

Entering Branch Operands
In the case of forward branches, the absolute address of the 
destination may not be known as the program is being entered. You 
may temporarily enter an asterisk (*) for branch to self in order to 
reserve space. After the actual address is discovered, the line 
containing the branch instruction can be re-entered using the 
correct value.

Branch operands are interpreted as signed hexadecimal numbers.

Assembler Output/Program Listings

Obtain a listing of the program with either the MD command or DS 
command.

MD ADDR[:COUNT | ADDR] ;DI

or

DS ADDR[:COUNT | ADDR]

Both MD and DS commands require the starting address to be 
entered in the command line. When the MD command is invoked 
with the DI option, the number of instructions disassembled and 
displayed is equal to the line count. The line count parameter is 
optional and defaults to the eight instructions displayed.

To obtain a hardcopy listing of a program, use the PA (Printer 
Attach) command to activate the printer port, and then use MD to 
display the listing on the terminal and print it on the printer.

Note again, that the listing may not correspond exactly to the 
program as entered. As discussed in the section on the 
Disassembled Source Line, the disassembler displays in signed 
hexadecimal any number it interprets as an offset from a register; 
all other numbers are displayed in unsigned hexadecimal.



Entering and Modifying Source Programs

4-14

4

Assembler Error Messages

The following is a list of the assembler error messages:

An Operand has a Length of Zero

Unknown Mnemonic

Excessive Operand(s)

Missing Operand(s)

Operand Type Not Found

Operand Prefix

Operand Address Misalignment

Operand Displacement

Operand Sign Extension

Operand Data Field Overflow

Operand Conversion



5

5-1

5System Calls

Introduction
This chapter describes the PPCBug System Call handler, which 
allows system calls from user programs. The system calls can be 
used to access selected functional routines contained within the 
debugger, including input and output routines. The System Call 
handler may also be used to transfer control to the debugger at the 
end of a user program (refer to .RETURN on page 5-62). 

In the descriptions of some input and output functions, reference is 
made to the default input port or the default output port. After 
power-up or reset, the default input and output port is initialized to 
be port 0 (the debug port). The defaults may be changed, however, 
using the .REDIR_I and .REDIR_O functions.

Invoking System Calls

The System Call handler is accessible through the SC (system call) 
instruction, with exception vector $00C00 (System Call Exception).

To invoke a system call from a user program, insert the following 
code into the source program. The code corresponding to the 
particular system routine is specified in register R10. Parameters 
are passed and returned in registers R3 to Rn, where n is less than 
10.

ADDI R10,R0,$XXXX

SC

$XXXX is the 16-bit code for the system call routine, and SC is the 
system call instruction (system call to the debugger). Register R10 
is set to $0000XXXX.

Refer to Chapter 4 for information on using the SYSCALL system 
call instruction in the One-line Assembler.



System Call Routines

5-2

5

String Formats for I/O

Within the context of the System Call handler there are two formats 
for strings:

A line is defined as a string followed by a carriage return and a line 
feed (<CR><LF>).

System Call Routines
The system call routines are described in this chapter, in order by 
the 16-bit hex code. Table 5-1 list the routines in code order; Table 
5-2 lists them in alphabetical order.

On entry to firmware system call routines, the machine state is 
saved so that a subsequent abort or break condition allows you to 
resume if you wish. 

Pointer/Pointer Format The string is defined by a pointer to 
the first character and a pointer to the 
last character + 1. 

Pointer/Count Format The string is defined by a pointer to a 
count byte, which contains the count 
of characters in the string, followed 
by the string itself. 

Table 5-1.  System Call Routines -- Hex Code Order  

Code Routine Description

$0000 .INCHR Input character
$0001 .INSTAT Input serial port status
$0002 .INLN Input line (pointer/pointer format)
$0003 .READSTR Input string (pointer/count format)
$0004 .READLN Input line (pointer/count format)
$0005 .CHKBRK Check for break
$0010 .DSKRD Disk read
$0011 .DSKWR Disk write



System Calls

5-3

5

$0012 .DSKCFIG Disk conÞgure
$0014 .DSKFMT Disk format
$0015 .DSKCTRL Disk control
$0018 .NETRD Read/get from host
$0019 .NETWR Write/send to host
$001A .NETCFIG ConÞgure network parameters
$001B .NETFOPN Open Þle for reading
$001C .NETFRD Retrieve speciÞed Þle blocks
$001D .NETCTRL Implement special control functions
$0020 .OUTCHR Output character
$0021 .OUTSTR Output string (pointer/pointer format)
$0022 .OUTLN Output line (pointer/pointer format)
$0023 .WRITE Output string (pointer/count format)
$0024 .WRITELN Output line (pointer/count format)
$0025 .WRITDLN Output line with data (pointer/count format)
$0026 .PCRLF Output carriage return and line feed
$0027 .ERASLN Erase line
$0028 .WRITD Output string with data (pointer/count format)
$0029 .SNDBRK Send break
$0043 .DELAY Timer delay function
$0050 .RTC_TM Time initialization for RTC
$0051 .RTC_DT Date initialization for RTC
$0052 .RTC_DSP Display RTC time and date
$0053 .RTC_RD Read the RTC Registers
$0060 .REDIR Redirect I/O of a System Call function
$0061 .REDIR_I Redirect input
$0062 .REDIR_O Redirect output
$0063 .RETURN Return to PPCBug
$0064 .BINDEC Convert binary to Binary Coded Decimal (BCD)
$0067 .CHANGEV Parse value
$0068 .STRCMP Compare two strings (pointer/count format)

Table 5-1.  System Call Routines -- Hex Code Order  (Continued)

Code Routine Description

System Calls



System Call Routines

5-4

5

 

$0069 .MULU32 Multiply two 32-bit unsigned integers
$006A .DIVU32 Divide two 32-bit unsigned integers
$006B .CHK_SUM Generate checksum
$0070 .BRD_ID Return pointer to board ID packet
$0071 .ENVIRON Access boot environment parameters
$0073 .PFLASH Program FLASH memory
$0074 .DIAGFCN Diagnostic function(s)
$0090 .SIOPEPS Retrieve SCSI pointers
$0100 .FORKMPU Fork MPU
$0101 .FORKMPUR Fork Idle MPU with Register Set
$0110 .IDLEMPU Idle MPU
$0120 .IOINQ Port Inquire
$0124 .IOINFORM Port Inform
$0128 .IOCONFIG Port ConÞgure
$012C .IODELETE Port Delete
$0130 .SYMBOLTA Attach Symbol Table
$0131 .SYMBOLTD Detach Symbol Table

Table 5-2.  System Call Routines -- Alphabetical Order  

Routine Code Description

.BINDEC $0064 Convert binary to Binary Coded Decimal (BCD)

.BRD_ID $0070 Return pointer to board ID packet

.CHANGEV $0067 Parse value

.CHK_SUM $006B Generate checksum

.CHKBRK $0005 Check for break

.DELAY $0043 Timer delay function

.DIAGFCN $0074 Diagnostic function(s)

.DIVU32 $006A Divide two 32-bit unsigned integers

Table 5-1.  System Call Routines -- Hex Code Order  (Continued)

Code Routine Description



System Calls

5-5

5

.DSKCFIG $0012 Disk conÞgure

.DSKCTRL $0015 Disk control

.DSKFMT $0014 Disk format

.DSKRD $0010 Disk read

.DSKWR $0011 Disk write

.ENVIRON $0071 Access boot environment parameters

.ERASLN $0027 Erase line

.FORKMPU $0100 Fork MPU

.FORKMPUR $0101 Fork Idle MPU with Register Set

.IDLEMPU $0110 Idle MPU

.INCHR $0000 Input character

.INLN $0002 Input line (pointer/pointer format)

.INSTAT $0001 Input serial port status

.IOCONFIG $0128 Port ConÞgure

.IODELETE $012C Port Delete

.IOINFORM $0124 Port Inform

.IOINQ $0120 Port Inquire

.MULU32 $0069 Multiply two 32-bit unsigned integers

.NETCFIG $001A ConÞgure network parameters

.NETCTRL $001D Implement special control functions

.NETFOPN $001B Open Þle for reading

.NETFRD $001C Retrieve speciÞed Þle blocks

.NETRD $0018 Read/get from host

.NETWR $0019 Write/send to host

.OUTCHR $0020 Output character

.OUTLN $0022 Output line (pointer/pointer format)

.OUTSTR $0021 Output string (pointer/pointer format)

.PCRLF $0026 Output carriage return and line feed

.PFLASH $0073 Program FLASH memory

.READLN $0004 Input line (pointer/count format)

.READSTR $0003 Input string (pointer/count format)

Table 5-2.  System Call Routines -- Alphabetical Order  (Continued)

Routine Code Description



System Call Routines

5-6

5

.REDIR $0060 Redirect I/O of a System Call function

.REDIR_I $0061 Redirect input

.REDIR_O $0062 Redirect output

.RETURN $0063 Return to PPCBug

.RTC_DSP $0052 Display RTC time and date

.RTC_DT $0051 Date initialization for RTC

.RTC_RD $0053 Read the RTC Registers

.RTC_TM $0050 Time initialization for RTC

.SIOPEPS $0090 Retrieve SCSI pointers

.SNDBRK $0029 Send break

.STRCMP $0068 Compare two strings (pointer/count format)

.SYMBOLTA $0130 Attach Symbol Table

.SYMBOLTD $0131 Detach Symbol Table

.WRITD $0028 Output string with data (pointer/count format)

.WRITDLN $0025 Output line with data (pointer/count format)

.WRITE $0023 Output string (pointer/count format)

.WRITELN $0024 Output line (pointer/count format)

Table 5-2.  System Call Routines -- Alphabetical Order  (Continued)

Routine Code Description



5

.INCHR

5-7

5System Calls

.INCHR 

Name

.INCHR - Input character routine 

Code 

$0000 

Description     

.INCHR reads a character from the default input port. The 
character is returned in the LSB of R03. 

Entry Conditions 

None 

Exit Conditions Different From Entry 

R03: bits 7 through 0 contain the character returned
R03: bits 31 through 8 are zero. 



.INSTAT

5-8

5

.INSTAT 

Name

.INSTAT - Input serial port status routine

Code 

$0001 

Description

.INSTAT is used to see if there are characters in the default input 
port buffer. R03 is set to indicate the result of the operation. 

Entry Conditions 

No arguments required 

Exit Conditions Different From Entry 

R03: Bit 3 (ne) = 1; Bit 2 (eq) = 0 if the receiver buffer is not empty.
R03: Bit 3 (ne) = 0; Bit 2 (eq) = 1 if the receiver buffer is empty. 



.INLN

5-9

5

.INLN 

Name 

.INLN - Input line routine 

Code 

$0002 

Description

.INLN is used to read a line from the default input port. The buffer 
size should be at least 256 bytes. 

Entry Conditions 

R03: 32-bit address of string buffer 

Exit Conditions Different From Entry 

R03: Address of last character in the string+1 

Note A line is a string of characters terminated by a <CR>. 
The maximum allowed size is 254 characters. The 
terminating <CR> is not considered part of the string, 
but it is returned in the buffer, that is, the returned 
pointer points to it. The control characters described in 
the section Control Characters in Chapter 2 are in effect. 



.READSTR

5-10

5

.READSTR 

Name 

.READSTR - Read string into variable-length buffer 

Code 

$0003 

Description

.READSTR is used to read a string of characters from the default 
input port into a buffer. On entry, the Þrst byte in the buffer 
indicates the maximum number of characters that can be placed in 
the buffer. The buffer size should at least be equal to that number+2. 
The maximum number of characters that can be placed in a buffer 
is 254 characters. On exit, the count byte indicates the number of 
characters in the buffer. Input terminates when a <CR> is received. 
A null character appears in the buffer, although it is not included in 
the string count. All printable characters are echoed to the default 
output port. The <CR> is not echoed. Some control character 
processing is done:

All other control characters are ignored

Entry Conditions

R03: 32-bit address of input buffer

Exit Conditions Different From Entry

The count byte contains the number of bytes in the buffer.

^G Bell Echoed

^X Cancel line Line is erased

^H Backspace Last character is erased

<DEL> Same as backspace Last character is erased

<LF> Line Feed Echoed

<CR> Carriage Return Terminates input



.READSTR

5-11

5

Note This routine allows the caller to dictate the maximum 
length of input to be less than 254 characters. If more 
characters are entered, then the buffer input is 
truncated. Use the control characters described in Disk 
I/O Support on page 1-23.



.READLN

5-12

5

.READLN 

Name 

.READLN - Read line to Þxed-length buffer 

Code

$0004 

Description

.READLN is used to read a string of characters from the default 
input port. Characters are echoed to the default output port. A 
string consists of a count byte followed by the characters read from 
the input. The count byte indicates the number of characters in the 
input string, excluding the <CR><LF> sequence. A string may be up 
to 254 characters. 

Entry Conditions 

R03: 32-bit address of input buffer 

Exit Conditions Different From Entry 

The Þrst byte in the buffer indicates the string length. 

Note The caller must allocate 256 bytes for a buffer. Input 
may be up to 254 characters. A <CR><LF> sequence is 
sent to default output following echo of input. The 
control characters described in the section Control 
Characters in Chapter 2 are in effect.



.CHKBRK

5-13

5

.CHKBRK 

Name 

.CHKBRK - Check for break 

Code 

$0005 

Description

.CHKBRK alters R03 according to a break status being detected at 
the default input port. 

Entry Conditions 

No arguments required 

Exit Conditions Different From Entry 

R03: Bit 3 (ne) = 1; Bit 2 (eq) = 0 if break status is not detected. 
R03: Bit 3 (ne) = 0; Bit 2 (eq) = 1 if break status is detected. 



.DSKRD   .DSKWR

5-14

5

.DSKRD  
.DSKWR 

Name

.DSKRD - Disk read routine 

.DSKWR - Disk write routine 

Codes

$0010 

$0011 

Description

These routines are used to read and write blocks of data from/to the 
speciÞed disk or tape device. Information about the data transfer is 
passed in a command packet which has been built somewhere in 
memory. (The user program must Þrst manually prepare the 
packet.) The address of the packet is passed as an argument to the 
routine. The same command packet format is used for .DSKRD and 
.DSKWR. It is eight half-words in length and is arranged as follows:

F E D C B A 9 8 7 6 5 4 3 2 1 0
$00 Controller LUN Device LUN
$02 Status Half-Word
$04

Memory Address
Most SigniÞcant Half-Word

$06 Least SigniÞcant Half-Word
$08 Block Number (Disk) Most SigniÞcant Half-Word

or
$0A File Number (Tape) Least SigniÞcant Half-Word
$0C Number of Blocks
$0E Flag Byte Address ModiÞer



.DSKRD   .DSKWR

5-15

5

Field descriptions: 

Controller LUN Logical Unit Number (LUN) of controller to use 

Device LUN Logical Unit Number (LUN) of device to use 

Status 
Half-Word 

This status half-word reßects the result of the 
operation. It is zero if the command completed 
without errors. Refer to Appendix F for meanings of 
returned error codes. 

Memory 
Address

Address of buffer in memory. On a disk read, data is 
written starting at this address. On a disk write, data 
is read starting at this address. 

Block Number For disk devices, this is the block number where the 
transfer starts. On a disk read, data is read starting at 
this block. On a disk write, data is written starting at 
this block. 

File Number For streaming tape devices, this is the Þle number 
where the transfer starts. This Þeld is used if the IFN 
bit in the Flag Byte is cleared (refer to the Flag Byte 
description below). On a disk read, data is read 
starting at this Þle. On a disk write, data is written 
starting at this Þle. 

Number of 
Blocks

The number of blocks to read from the disk 
(.DSKRD) or to write to the disk (.DSKWR). For 
streaming tape devices, the actual number of blocks 
transferred is returned in this Þeld. 

Flag Byte The ßag byte is used to specify variations of the same 
command, and to receive special status information. 
Bits 0 through 3 are used as command bits, and bits 4 
through 7 are used as status bits. For disk devices, 
this Þeld must be set to zero. For streaming tape 
devices, the following bits are deÞned: 

Bit 7 Filemark ßag. If 1, a Þlemark was detected at 
the end of the last operation. 



.DSKRD   .DSKWR

5-16

5

Entry Conditions 

R03: 32-bit address of command packet 

Exit Conditions Different From Entry 

Status half-word of command packet is updated. Data is written 
into memory as a result of .DSKRD routine. Data is written to disk 
as a result of .DSKWR routine.

R03: Bit 3 (ne) = 1; Bit 2 (eq) = 0 if errors. 
R03: Bit 3 (ne) = 0; Bit 2 (eq) = 1 if no errors. 

Bit 1 Ignore File Number (IFN) ßag. If 0, the Þle 
number Þeld is used to position the tape before 
any reads or writes are done. If 1, the Þle 
number Þeld is ignored, and reads or writes 
start at the present tape position. 

Bit 0 End of File ßag. If 0, reads or writes are done 
until the speciÞed block count is exhausted. If 
1, reads are done until the count is exhausted 
or until a Þlemark is found. If 1, writes are 
terminated with a Þlemark. 

Address 
ModiÞer

VMEbus address modiÞer to use while transferring 
data. If zero, a default value is selected by the 
debugger. If nonzero, the speciÞed value is used. 



.DSKCFIG

5-17

5

.DSKCFIG 

Name

.DSKCFIG - disk conÞgure routine 

Code

$0012 

Description

This routine allows you to change the conÞguration of the speciÞed 
device. It effectively performs the IOT command under program 
control. Refer to Table E-2 for information on formatting ßoppy 
disks.

All the required parameters are passed in a command packet which 
has been built somewhere in memory. The address of the packet is 
passed as an argument to the routine. Refer to Command Packet on 
page 5-18.

Entry Conditions 

R03: 32-bit address of command packet 

Exit Conditions Different From Entry 

Status half-word of command packet is updated. The device 
conÞguration is changed. 

R03: Bit 3 (ne) = 1; Bit 2 (eq) = 0 if errors. 
R03: Bit 3 (ne) = 0; Bit 2 (eq) = 1 if no errors.



.DSKCFIG

5-18

5

Command Packet

The command packet format is as follows:

Field descriptions:

F E D C B A 9 8 7 6 5 4 3 2 1 0
$00 Controller LUN Device LUN
$02 Status Half-Word
$04

Memory Address
Most SigniÞcant Half-Word

$06 Least SigniÞcant Half-Word
$08 0
$0A 0
$0C 0
$0E 0 Address ModiÞer

Controller LUN Logical Unit Number (LUN) of controller to use

Device LUN Logical Unit Number (LUN) of device to use 

Status 
Half-Word

This status half-word reßects the result of the 
operation. It is zero if the command completed 
without errors. Refer to Appendix F for meanings 
of returned error codes. 

Memory 
Address

Contains a pointer to a Device Descriptor Packet 
that contains the configuration information to be 
changed 

Address 
Modifier

VMEbus address modiÞer to use while 
transferring data. If zero, a default value is selected 
by the debugger. If nonzero, the speciÞed value is 
used. 



.DSKCFIG

5-19

5

Device Descriptor Packet

The Device Descriptor Packet is as follows:

Most of the Þelds in the Device Descriptor Packet are equivalent to 
the Þelds deÞned in the ConÞguration Area block (CFGA). In the 
Þeld descriptions following, reference is made to the equivalent 
Þeld in the CFGA whenever possible. For additional information on 
these Þelds, refer to tables in ConÞguration Area Block CFGA Fields on 
page 5-22.  

F E D C B A 9 8 7 6 5 4 3 2 1 0
$00 Controller LUN Device LUN
$02 0
$04

Parameters Mask
Upper (Most SigniÞcant) Half-Word

$06 Lower (Least SigniÞcant) Half-Word
$08

Attributes Mask
Upper (Most SigniÞcant) Half-Word

$0A Lower (Least SigniÞcant) Half-Word
$0C

Attributes Flags
Upper (Most SigniÞcant) Half-Word

$0E Lower (Least SigniÞcant) Half-Word
$10

Parameters

Controller LUN Same as in command packet

Device LUN Same as in command packet 

Parameters 
Mask

Equivalent to the IOSPRM and IOSEPRM Þelds, 
with the lower half-word equivalent to IOSPRM, 
and the upper half-word equivalent to IOSEPRM 

Attributes 
Mask

Equivalent to the IOSATM and IOSEATM Þelds, 
with the lower half-word equivalent to IOSATM, 
and the upper half-word equivalent to IOSEATM 



.DSKCFIG

5-20

5

The Disk Packet Parameters are shown in the following table. The 
parameters that do not have an exact equivalent CFGA field are 
indicated with an asterisk (*).

Attributes 
Flags

Equivalent to the IOSATW and IOSEATW Þelds, 
with the lower half-word equivalent to IOSATW, 
and the upper half-word equivalent to IOSEATW 

Parameters The parameters used for device reconÞguration are 
speciÞed in this area. Most parameters have an 
exact CFGA equivalent.

Table 5-3.  Disk Packet Parameters

Parameter
Offset
(Bytes)

Length
(Bytes)

CFGA 
Equivalent Description

P_DDS* $10 1 N/A Device descriptor size. For internal use 
only, this Þeld does not have an 
equivalent CFGA Þeld. It should be set 
to 0.

P_DSR $11 1 IOSSR Step rate (encoded). Refer to the IOSSR 
Þeld in Table 5-8 for step rate code 
values.

P_DSS* $12 1 IOSPSM Sector size, encoded as follows 
(IOSPSM is a two-byte Þeld containing 
the actual sector size):

$00 128 bytes

$01 256 bytes

$02 512 bytes

$03 1024 bytes

$04
-
$FF

Reserved encodings



.DSKCFIG

5-21

5

P_DBS* $13 1 IOSREC Record (Block) size, encoded as follows 
(IOSREC is a two-byte Þeld containing 
the actual block size):

$00 128 bytes

$01 256 bytes

$02 512 bytes

$03 1024 bytes

P_DST* $14 2 IOSSPT Sectors per track; P_DST is a two byte 
Þeld, IOSSPT is a one-byte Þeld.

P_DIF $16 1 IOSILV Interleave factor

P_DSO $17 1 IOSSOF Spiral offset

P_DSH* $18 1 IOSSHD Starting head; This Þeld is equivalent to 
the lower byte of IOSSHD. 

P_DNH $19 1 IOSHDS Number of heads

P_DNCYL $1A 2 IOSTRK Number of cylinders

P_DPCYL $1C 2 IOSPCOM Precompensation cylinder

P_DRWCY
L

$1E 2 IOSRWCC Reduced write current cylinder

P_DECCB $20 2 IOSECC ECC data burst length

P_DGAP1 $22 1 IOSGPB1 Gap 1 size

P_DGAP2 $23 1 IOSGPB2 Gap 2 size

P_DGAP3 $24 1 IOSGPB3 Gap 3 size

P_DGAP4 $25 1 IOSGPB4 Gap 4 size

P_DSSC $26 1 IOSSSC Spare sectors count

P_DRUNIT $27 1 IOSRUNIT Reserved area units

P_DRCALT $28 2 IOSRSVC1 Reserved count 1 (for alternate mapping 
area)

P_DRCCTR $2A 2 IOSRSVC2 Reserved count 2 (for controller)

Table 5-3.  Disk Packet Parameters

Parameter
Offset
(Bytes)

Length
(Bytes)

CFGA 
Equivalent Description



.DSKCFIG

5-22

5

Configuration Area Block CFGA Fields

Attribute Mask -- IOSATM and IOSEATM

The IOSATM field bits are defined in the following table: A 1 in a 
particular bit position indicates that the corresponding attribute 
from the attributes (or extended attributes) word should be used to 
update the configuration. A 0 in a bit position indicates that the 
current attribute should be retained. 

All IOSEATM bits are undefined and should be set to 0. 

Parameter Mask -- IOSPRM and IOSEPRM

The IOSPRM and IOSEPRM bits are defined in the following tables. 
A 1 in a particular bit position indicates that the corresponding 
parameter from the configuration area (CFGA) should be used to 
update the device configuration. A 0 in a bit position indicates that 
the parameter value in the current configuration will be retained.    

Table 5-4.  IOSATM Fields (CFGA)

Label
Bit 

Position
Description

IOADDEN 0 Data density
IOATDEN 1 Track density
IOADSIDE 2 Single/double sided
IOAFRMT 3 Floppy disk format
IOARDISC 4 Disk type
IOADDEND 5 Drive data density
IOATDEND 6 Drive track density
IOARIBS 7 Embedded servo drive seek
IOADPCOM 8 Post-read/pre-write precompensation
IOASIZE 9 Floppy disk size
IOATKZD 13 Track zero data density



.DSKCFIG

5-23

5

Attribute Word -- IOSATW and IOSEATW

IOSATW contains various flags that specify characteristics of the 
media and drive, which are defined in the following table. All 
unused bits must be set to 0. All IOSEATW bits are undefined and 
should be set to 0.         

Table 5-5.  IOSPRM Fields (CFGA)

Label
Bit 

Position
Description

IOSRECB 0 Operating system block size
IOSSPTB 4 Sectors per track
IOSHDSB 5 Number of heads
IOSTRKB 6 Number of cylinders
IOSILVB 7 Interleave factor
IOSSOFB 8 Spiral offset
IOSPSMB 9 Physical sector size
IOSSHDB 10 Starting head number
IOSPCOMB 12 Precompensation cylinder number
IOSSRB 14 Step rate code
IOSRWCCB 15 Reduced write current cylinder number and 

ECC data burst length 

Table 5-6.  IOSEPRM Fields (CFGA)

Label
Bit 

Position
Description

IOAGPB1 0 Gap byte 1
IOAGPB2 1 Gap byte 2
IOAGPB3 2 Gap byte 3
IOAGPB4 3 Gap byte 4
IOASSC 4 Spare sector count
IOARUNIT 5 Reserved area units
IOARVC1 6 Reserved count 1
IOARVC2 7 Reserved count 2



.DSKCFIG

5-24

5

Table 5-7.  IOSATW Fields (CFGA)

Bit 
Number

Description

Bit 0 Data density: 0 = Single density (FM encoding)
1 = Double density (MFM encoding)

Bit 1 Track density: 0 = Single density (48 TPI)
1 = Double density (96 TPI)

Bit 2 Number of sides: 0 = Single sided ßoppy
1 = Double sided ßoppy

Bit 3 Floppy disk format:
(sector numbering)

0 = Motorola format
1 to n on side 0
n+1 to 2n on side 1

1 = Standard IBM format
1 to n on both sides

Bit 4 Disk type: 0 = Floppy disk
1 = Hard disk

Bit 5 Drive data density: 0 = Single density (FM encoding)
1 = Double density (MFM encoding)

Bit 6 Drive track density: 0 = Single density
1 = Double density

Bit 8 Post-read/pre-write
precompensation:

0 = Pre-write
1 = Post-read

Bit 9 Floppy disk size: 0 = 3 1/2 and 5 1/4 inch ßoppy
1 = 8-inch ßoppy

Bit 13 Track zero density: 0 = Single density (FM encoding)
1 = Same as remaining tracks



.DSKCFIG

5-25

5

Table 5-8.  CFGA Fields

Parameter Description

IOSREC Record (Block) size Number of bytes per record (block). Must be an 
integer multiple of the physical sector size. 

IOSSPT Sectors per track Number of sectors per track.
IOSHDS Number of heads Number of recording surfaces for the speciÞed 

device. 
IOSTRK Number of cylinders Number of cylinders on the media.
IOSILV Interleave factor This Þeld speciÞes how the sectors are formatted on 

a track. Normally, consecutive sectors in a track are 
numbered sequentially in increments of 1 
(interleave factor of 1). The interleave factor controls 
the physical separation of logically sequential 
sectors. This physical separation gives the host time 
to prepare to read the next logical sector without 
requiring the loss of an entire disk revolution. 

IOSPSM Physical sector size Actual number of bytes per sector on media.
IOSSOF Spiral offset Used to displace the logical start of a track from the 

physical start of a track. The displacement is equal 
to the spiral offset times the head number, assuming 
that the Þrst head is 0. This displacement is used to 
give the controller time for a head switch when 
crossing tracks. 

IOSSHD Starting head number The Þrst head number for the device.
IOSPCOM Precompensation

cylinder
The cylinder on which precompensation begins.

IOSSR Step The rate at which the read/write heads can be 
moved when seeking a track on the disk. The 
encoding is as follows: 

3-1/2 Inch/
Step Rate Winchester 5-1/4 Inch   8-Inch

Code Hard Disks  Floppy Floppy
$00 0 msec 12 msec 6 msec
$01 6 msec 6 msec 3 msec
$02 10 msec 12 msec 6 msec
$03 15 msec 20 msec 10 msec
$04 20 msec 30 msec 15 msec



.DSKCFIG

5-26

5

IOSRWCC Reduced write
current cylinder

The cylinder number at which the write current 
should be reduced when writing to the drive. This 
parameter is normally speciÞed by the drive 
manufacturer. 

IOSECC ECC data burst length The number of bits to correct for an ECC error when 
supported by the disk controller. 

IOSGPB1 Gap byte 1 The number of words of zeros that are written 
before the header Þeld in each sector during format. 

IOSGPB2 Gap byte 2 The number of words of zeros that are written 
between the header and data Þelds during format 
and write commands. 

IOSGPB3 Gap byte 3 The number of words of zeros that are written after 
the data Þelds during format commands. 

IOSGPB4 Gap byte 4 The number of words of zeros that are written after 
the last sector of a track and before the index pulse. 

IOSSSC Spare sectors count The number of sectors per track allocated as spare 
sectors. These sectors are only used as replacements 
for bad sectors on the disk. 

IOSRUNIT Reserved area units The unit of measurement used for IOSRSVC1 and 
IOSRSVC2. If zero, the units are in tracks; if 1, the 
units are in cylinders. 

IOSRSVC1 Reserved count 1 The number of tracks (IOSRUNIT = 0), or the 
number of cylinders (IOSRUNIT = 1) reserved for 
the alternate mapping area on the disk. 

IOSRSVC2 Reserved count 2 The number of tracks (IOSRUNIT = 0), or the 
number of cylinders (IOSRUNIT = 1) reserved for 
use by the controller. 

Table 5-8.  CFGA Fields

Parameter Description



.DSKFMT

5-27

5

.DSKFMT 

Name 

.DSKFMT - Disk format routine 

Code 

$0014 

Description

This routine allows you to send a format command to the speciÞed 
device. The parameters required for the command are passed in a 
command packet which has been built somewhere in memory. The 
address of the packet is passed as an argument to the routine. The 
format of the packet is as follows: 

Field descriptions: 

F E D C B A 9 8 7 6 5 4 3 2 1 0
$00 Controller LUN Device LUN
$02 Status Half-Word
$04

Memory Address
Most SigniÞcant Half-Word

$06 Least SigniÞcant Half-Word
$08

Disk Block Number
Most SigniÞcant Half-Word

$0A Least SigniÞcant Half-Word
$0C 0
$0E Flag Byte Address ModiÞer

Controller LUN Logical Unit Number (LUN) of controller to use 

Device LUN Logical Unit Number of device to use 

Status 
Half-Word

This status half-word reßects the result of the 
operation. It is zero if the command completed 
without errors. Refer to Appendix F for meanings 
of returned error codes. 



.DSKFMT

5-28

5

Entry Conditions 

R03: 32-bit address of command packet 

Memory 
Address

Address of buffer in memory. On disk read, data is 
written starting at this address. On disk write, data 
is read starting at this address. On disk format, this 
Þeld does not apply. 

Block 
Number

For disk devices, when doing a format track, the 
track that contains this block number is formatted. 
This Þeld is ignored for streaming tape devices. 

Flag Byte Contains additional information. Bit 0 is 
interpreted as follows for disk devices: 

 If 0, it indicates a Format Track operation. 
The track that contains the speciÞed block is 
formatted. 

 If 1, it indicates a Format Disk operation. All 
the tracks on the disk are formatted. 

For streaming tapes, bit 0 is interpreted as follows: 

If 0, it selects a Retension Tape operation. 
This rewinds the tape to BOT, advances the 
tape without interruptions to EOT, and then 
rewinds it back to BOT. Tape retension is 
recommended by cartridge tape suppliers 
before writing or reading data when a 
cartridge has been subjected to a change in 
environment or a physical shock, has been 
stored for a prolonged period of time or at 
extreme temperature, or has been previously 
used in a start/stop mode. 

If 1, it selects an Erase Tape operation. This 
completely clears the tape of previous data 
and at the same time retensions the tape. 

Address 
ModiÞer

VMEbus address modiÞer to use while 
transferring data. If zero, a default value is selected 
by the debugger. If nonzero, the speciÞed value is 
used. 



.DSKFMT

5-29

5

Exit Conditions Different From Entry 

Status half-word of command packet is updated. 

R03: Bit 3 (ne) = 1; Bit 2 (eq) = 0 if errors. 
R03: Bit 3 (ne) = 0; Bit 2 (eq) = 1 if no errors. 



.DSKCTRL

5-30

5

.DSKCTRL 

Name 

.DSKCTRL - Disk control routine 

Code 

$0015 

Description

This routine is used to implement any special device control 
routines that cannot be accommodated easily with any of the other 
disk routines. At the present, the only deÞned routine is SEND 
packet, which allows you to send a packet in the speciÞed format of 
the controller. The required parameters are passed in a command 
packet which has been built somewhere in memory. The address of 
the packet is passed as an argument to the routine. 

The packet is as follows: 

Field descriptions:

F E D C B A 9 8 7 6 5 4 3 2 1 0
$00 Controller LUN Device LUN
$02 Status Half-Word
$04

Memory Address
Most SigniÞcant Half-Word

$06 Least SigniÞcant Half-Word
$08 0
$0A 0
$0C 0
$0E 0 Address ModiÞer

Controller LUN Logical Unit Number (LUN) of controller to use. 

Device LUN Logical Unit Number of device to use 



.DSKCTRL

5-31

5

Entry Conditions 

R03: 32-bit address of command packet 

Exit Conditions Different From Entry 

Status half-word of command packet is updated. Additional side 
effects depend on the packet sent to the controller. 

R03: Bit 3 (ne) = 1; Bit 2 (eq) = 0 if errors. 
R03: Bit 3 (ne) = 0; Bit 2 (eq) = 1 if no errors. 

Status 
Half-Word

This status half-word reßects the result of the 
operation. It is zero if the command completed 
without errors. Refer to Appendix F for meanings 
of returned error codes. 

Memory 
Address

Contains a pointer to the controller packet to send. 
Note that the controller packet to send (as opposed 
to the command packet) is controller and device 
dependent. Information about this packet should 
be found in the user's manual for the controller 
and device being accessed. 

Address 
Modifier

VMEbus address modiÞer to use while 
transferring data. If zero, a default value is selected 
by the debugger. If nonzero, the speciÞed value is 
used. 



.NETRD   .NETWR

5-32

5

.NETRD  
.NETWR 

Name 

.NETRD - Read/get from host 

.NETWR - Write/put to host

Code 

$0018/$0019 

Description 

This routine is used to get Þles from the destination host over the 
speciÞed network interface. The .NETWR system call is used to 
send Þles to the host. Information about the Þle transfer is passed in 
a command packet which has been built in memory. (The user 
program must Þrst manually prepare the packet.) The address of 
the packet is passed as an argument to the routine. These routines 
basically behave the same as the NIOP command, but under 
program control. All packets must be word-aligned. The format of 
the packet structure, NIOPCALL, is shown below: 

F E D C B A 9 8 7 6 5 4 3 2 1 0
$00 Controller LUN Device LUN
$02 Status Word
$04

Data Transfer Address
Most SigniÞcant Word

$06 Least SigniÞcant Word
$08

Maximum Length of Transfer
Most SigniÞcant Word

$0A Least SigniÞcant Word
$0C

Byte Offset
Most SigniÞcant Word

$0E Least SigniÞcant Word
$10

Transfer Time in Seconds (Status)
Most SigniÞcant Word

$12 Least SigniÞcant Word
$14

Transfer Byte Count (Status)
Most SigniÞcant Word

$16 Least SigniÞcant Word
$18

Boot Filename String $40(&64) Bytes
$56



.NETRD   .NETWR

5-33

5

Field descriptions:

Controller LUN Logical Unit Number (LUN) of controller to use 

Device LUN Logical Unit Number of device to use 

Status Word This status word reßects the result of the operation. 
It is zero if the command completed without 
errors. Refer to Appendix H for meanings of 
returned error codes. 

Data Transfer 
Address

Address of buffer in memory. On a read, data is 
read to (received to) starting at this address. On a 
write, data is written (sent) starting at this address. 

Length of 
Transfer

The number of bytes from the data transfer 
address to transfer. A length of 0 speciÞes to 
transfer the entire Þle on a read. On a write the 
length must be set to the number of bytes to 
transfer. 

Byte Offset The offset into the Þle on a read. This permits users 
to wind into a Þle. 

Transfer Time The number of seconds that elapsed for the period 
of the data transfer. This Þeld is status only and 
will be updated only on a successful data transfer.

Transfer 
Byte Count

This Þeld is status only and will be updated only 
on a successful data transfer. If the length of 
transfer Þeld is set to a non-zero value on a read 
and the desired Þle is smaller than the desired 
length, the length will be written to the actual 
number of bytes transferred, up to the desired 
length. 

Boot Filename 
String

The name of the Þle to load/store. On a write the 
Þle must exist on the host system and also be 
writable (write permission). The Þlename string 
must be null terminated. The maximum length of 
the string is 64 bytes inclusive of the null 
terminator. 



5

.NETCFIG

5-34

5System Calls

.NETCFIG 

Name 

.NETCFIG - ConÞgure network parameters 

Code 

$001A 

Description

This routine allows you to change the conÞguration parameters of 
the speciÞed network interface. The .NETCFIG system call 
effectively performs a NIOT command under program control. All 
the required parameters are passed in a command packet which has 
been built in memory. 

The address of the packet is passed as an argument to the routine. 
This packet contains the memory address (pointer) of the 
conÞguration parameters to/with you wish to update/change. The 
packet also contains a control ßag Þeld; this control ßag speciÞes 
the conÞguration operation: read, write, or write to NVRAM. All 
packets must be word-aligned. The format for the packet structure, 
NIOTCALL, is shown below:

F E D C B A 9 8 7 6 5 4 3 2 1 0
$00 Controller LUN Device LUN
$02 Status Word
$04 Network ConÞguration Parameters 

Pointer
Most SigniÞcant Word

$06 Least SigniÞcant Word
$08 Device ConÞguration Parameters 

Pointer
Most SigniÞcant Word

$0A Least SigniÞcant Word
$0C

Control Flag
Most SigniÞcant Word

$0E Least SigniÞcant Word



.NETCFIG

5-35

5

Field descriptions: 

The Network ConÞguration Parameters structure has the following 
format: 

Controller LUN Logical Unit Number (LUN) of controller to use 

Device LUN Logical Unit Number of device to use 

Status Word This status word reßects the result of the operation. 
It is zero if the command completed without 
errors. Refer to Appendix H for meanings of 
returned error codes. 

Network 
ConÞguration 
Parameters 
Pointer

The location in memory of the network 
conÞguration parameters. 

Device 
ConÞguration 
Parameters 
Pointer

The location in memory of the device conÞguration 
parameters. To date no device conÞguration 
parameters are used or needed. 

Control Flag The conÞguration parameters operation: read, 
write, or write to NVRAM. The control ßag bit 
deÞnitions are as follows: 

0 Read conÞguration parameters. Pointer 
speciÞes destination. 

1 Write (update) conÞguration parameters. 
Pointer speciÞes source. 

2 Write (update) conÞguration parameters in 
NVRAM. Pointer speciÞes source. 

F E D C B A 9 8 7 6 5 4 3 2 1 0
$00

Packet Version/IdentiÞer
Most SigniÞcant Word

$02 Least SigniÞcant Word
$04

Node Control Memory Address
Most SigniÞcant Word

$06 Least SigniÞcant Word
$08

Boot File Load Address
Most SigniÞcant Word

$0A Least SigniÞcant Word



.NETCFIG

5-36

5

$0C
Boot File Execution Address

Most SigniÞcant Word
$0E Least SigniÞcant Word
$10

Boot File Execution Delay
Most SigniÞcant Word

$12 Least SigniÞcant Word
$14

Boot File Length
Most SigniÞcant Word

$16 Least SigniÞcant Word
$18

Boot File Byte Offset
Most SigniÞcant Word

$1A Least SigniÞcant Word
$1C

Trace Buffer Address (TXD/RXD)
Most SigniÞcant Word

$1E Least SigniÞcant Word
$20

Client IP Address
Most SigniÞcant Word

$22 Least SigniÞcant Word
$24

Server IP Address
Most SigniÞcant Word

$26 Least SigniÞcant Word
$28

Subnet IP Address Mask
Most SigniÞcant Word

$2A Least SigniÞcant Word
$2C

Broadcast IP Address Mask
Most SigniÞcant Word

$2E Least SigniÞcant Word
$30

Gateway IP Address
Most SigniÞcant Word

$32 Least SigniÞcant Word
$34 BOOTP/RARP Retry TFTP/ARP Retry
$36 BOOTP/RARP Control Update Control
$38

$76
Boot Filename String $40(&64) Bytes

$78

$B6
Argument Filename String $40(&64) Bytes

F E D C B A 9 8 7 6 5 4 3 2 1 0



.NETCFIG

5-37

5

Field descriptions: 

Node Control 
Memory Address

The starting address of the necessary memory 
needed for the transmit and receive buffers. 256KB 
are needed for the speciÞed Ethernet driver 
(transmit/receive buffers). 

Client IP Address The IP address of the client. The Þrmware is 
considered to be the client. 

Server IP Address The IP address of the server. The Þrmware is 
considered to be the server. 

Subnet IP 
Address Mask 

The subnet IP address mask. This mask is used to 
determine if the server and client are resident on 
the same network. If they are not, the gateway IP 
address is used as the intermediate target (server). 

Broadcast IP 
Address 

The broadcast IP address that the Þrmware utilizes 
when an IP broadcast needs to be performed. 

Gateway IP 
Address 

The gateway IP address. The gateway address 
would be necessary if the server and the client do 
not reside on the same network. The gateway IP 
address would be used as the intermediate target 
(server). 

Boot File Name The name of the boot Þle to load. Once the Þle is 
loaded, control is passed to the loaded Þle 
(program). To specify a null Þlename, the string 
'NULL' must be used. This resets the Þlename 
buffer to a null character string. 

Argument File 
Name

The name of the argument Þle. This Þle may be 
used by the booted Þle (program) for an additional 
Þle load. To specify a null Þlename, the string 
'NULL' must be used. This resets the Þlename 
buffer to a null character string. 

Boot File Load 
Address 

The load address of the boot Þle. 

Boot File 
Execution 
Address 

The execution address of the boot Þle. 



.NETCFIG

5-38

5

Boot File 
Execution Delay

The delay, in seconds, before control is passed to 
the loaded Þle (program). 

Boot File Length The number of bytes from the data transfer 
address to transfer. A length of 0 speciÞes to 
transfer the entire Þle on a read. On a write the 
length must be set to the number of bytes to 
transfer.

Boot File Offset The offset into the Þle on a read. This permits users 
to wind into a Þle.

BOOTP/RARP 
Request Retry

The number of the number of retries that should be 
attempted prior to giving up. A retry value of zero 
speciÞes always to retry (not give up). 

TFTP/ARP 
Request Retry

The number of retries that should be attempted 
prior to giving up. A retry value of zero speciÞes 
always to retry (not give up). 

Trace Character 
Buffer Address

The starting address of memory in which to place 
the trace characters. The receive/transmit packet 
tracing is disabled by default (value of 0). Any non-
zero value enables tracing. 
Tracing would only be used in a debug 
environment and normally should be disabled. 
Care should be exercised when enabling this 
feature; you should ensure adequate memory 
exists. The following characters are deÞned for 
tracing:

? Unknown

& Unsupported Ethernet type

* Unsupported IP type

% Unsupported UDP type

$ Unsupported BOOTP type

[ BOOTP request

] BOOTP reply

+ Unsupported ARP type

( ARP request



.NETCFIG

5-39

5

) ARP reply

- Unsupported RARP type

{ RARP request

} RARP reply

^ Unsupported TFTPtype

\ TFTP read request

/ TFTP write request

< TFTP acknowledgment

> TFTP data

| TFTP error

, Unsupported ICMP type

: ICMP echo request

; ICMP echo reply

BOOTP/RARP 
Request Control

The BOOT/RARP request control during the boot 
process. Control can be set either to always (A) or 
to when needed (W). When control is set to always, 
the BOOTP/RARP request is always sent, and the 
accompanying reply always expected. When 
control is set to when needed, the BOOTP/RARP 
request is sent if needed (i.e., IP addresses of 0, null 
boot Þle name). 

BOOTP/RARP 
Replay Update 
Control

The updating of the conÞguration parameters 
following a BOOTP/RARP reply. Receipt of a 
BOOTP/RARP reply would only be in lieu of a 
request being sent. 



.NETFOPN

5-40

5

.NETFOPN 

Name 

.NETFOPN - Open Þle for reading 

Code 

$001B 

Description

This routine allows the user to open a Þle for reading. The Þrmware 
basically transmits a TFTP Read Request for the speciÞed Þle and 
returns to the user. It is your responsibility to retrieve the 
forthcoming Þle blocks; you would use the .NETFRD system call to 
do this. You must also perform the Þle block retrievals in a timely 
fashion, else the TFTP server will time-out. 

Information about the Þle open/request is passed in a command 
packet which has been built in memory. (The user program must 
Þrst manually prepare the packet.) The address of the packet is 
passed as an argument to the routine. All packets must be word-
aligned. 

The format of the packet structure, NFILEOPEN, is shown below: 

F E D C B A 9 8 7 6 5 4 3 2 1 0
$00 Controller LUN Device LUN
$02 Status Word
$04

$42
Filename String $40(&64) Bytes



.NETFOPN

5-41

5

Field descriptions: 

Controller LUN Logical Unit Number (LUN) of controller to use 

Device LUN Logical Unit Number of device to use 

Status Word This status word reßects the result of the 
operation. It is zero if the command completed 
without errors. Refer to Appendix H for 
meanings of returned error codes.

Filename String The name of the Þle to load. The Þlename string 
must be null terminated. The maximum length 
of the string is 64 bytes, inclusive of the null 
terminator. 



.NETFRD

5-42

5

.NETFRD 

Name 

.NETFRD - Retrieve speciÞed Þle blocks 

Code 

$001C 

Description

This routine allows you to retrieve the speciÞed Þle blocks. You 
would use this routine multiple times to retrieve the entire Þle. 
Prior to using this routine a .NETFOPN system call must have been 
performed. For each Þle block retrieved the Þrmware will transmit 
a TFTP ACK packet to acknowledge the receipt of data. The end of 
data will be signiÞed when the number of bytes transferred is 
smaller than the block size. The block size is set at 512 bytes (TFTP 
convention). For each .NETFRD system call performed, you must 
update (increment by one) the block number Þeld of the command 
packet. Initially the block number is one. 

Information about the Þle block is passed in a command packet 
which has been built in memory. (The user program must Þrst 
manually prepare the packet.) The address of the packet is passed 
as an argument to the routine. All packets must be word-aligned. 
The format of the packet structure, NFILEREAD, is shown below: 

F E D C B A 9 8 7 6 5 4 3 2 1 0
$00 Controller LUN Device LUN
$02 Status Word
$04

Data Transfer Address
Most SigniÞcant Word

$06 Least SigniÞcant Word
$08 Transfer Byte Count
$0A Block Number
$0C

Data Packet (File Block) Timeout
Most SigniÞcant Word

$0E Least SigniÞcant Word



.NETFRD

5-43

5

Field descriptions:

Controller LUN Logical Unit Number (LUN) of controller to use 

Device LUN Logical Unit Number of device to use 

Status Word This status word reßects the result of the operation. 
It is zero if the command completed without 
errors. Refer to Appendix H for meanings of 
returned error codes. 

Data Transfer 
Address

Address of buffer in memory to which to transfer 
the Þle block. 

Transfer Byte 
Count

This Þeld is status only and will be updated only 
on a successful data transfer. The size of each Þle 
block is 512 bytes unless it is the last block of the 
Þle (0 to 511 bytes).

Block Count The next expected block number to be received. 

Data Packet 
Timeout

The number of seconds to wait before giving up 
control to the caller. 



.NETCTRL

5-44

5

.NETCTRL

Name   

.NETCTRL - Implement special control routines

Code 

$001D 

Description

This routine is used to implement any special control routines that 
cannot be accommodated easily with any of the other network 
routines. At the present, the only deÞned packet is SEND packet, 
which allows you to send a packet in the speciÞed format to the 
speciÞed network interface driver. The required parameters are 
passed in a command packet which has been built somewhere in 
memory. 

The address of the packet is passed as an argument to the routine. 
This routine effectively performs an NIOC command, but under 
program control. All packets must be word-aligned. The format of 
the packet structure, NIOCCALL, is shown below: 

F E D C B A 9 8 7 6 5 4 3 2 1 0
$00 Controller LUN Device LUN
$02 Status Word
$04

Command IdentiÞer
Most SigniÞcant Word

$06 Least SigniÞcant Word
$08

Memory Address (Data Transfers)
Most SigniÞcant Word

$0A Least SigniÞcant Word
$0C

Number of Bytes (Data Transfers)
Most SigniÞcant Word

$0E Least SigniÞcant Word
$10

Status/Control Flags
Most SigniÞcant Word

$12 Least SigniÞcant Word



.NETCTRL

5-45

5

Field descriptions:

Controller LUN Logical Unit Number (LUN) of controller to use 

Device LUN Logical Unit Number of device to use 

Status Word This status word reßects the result of the 
operation. It is zero if the command completed 
without errors. Refer to Appendix H for 
meanings of returned error codes. 

Command 
IdentiÞer

The command operation type. The command 
types (identiÞers) are as follows: 

0 Initialize device/channel/node

1 Get hardware (Ethernet) address 
(network node)

2 Transmit (put) data packet

3 Receive (get) data packet

4 Flush receiver and receive buffers

5 Reset device/channel/node

Rules on commands: 

The initialization (type 0) of the 
device/channel/node must always be 
performed Þrst. If you have booted or initiated 
some other network I/O command, the 
initialization would already have been done. 

The ßush receiver and receive buffer (type 4) 
would be used if, for example, the current 
receive data is not longer needed, or to provide a 
known buffer state prior to initiating data 
transfers. 

The reset device/channel/node (type 5) would 
be used if another operating system (node 
driver) needs to be in control of the 
device/channel/node. Basically, put the 
device/channel/node to a known state. 



.NETCTRL

5-46

5

Memory Address The memory address in which the data transfer 
operation (types 1, 2, and 3) would take place 
from/to. 

Number of Bytes The number of bytes of the data transfer. 

Status/Control 
Flags

This parameter speciÞes control and status ßags 
as needed by the operation types. 

Bit #16 - Receive data transferred to user's 
memory. 



.OUTCHR

5-47

5

.OUTCHR 

Name 

.OUTCHR - Output character routine 

Code 

$0020 

Description

This routine outputs a character to the default output port. 

Entry Conditions 

R03: Bits 7 through 0: Character (byte)

Exit Conditions Different From Entry 

Character is sent to the default I/O port. 



.OUTSTR   .OUTLN

5-48

5

.OUTSTR  
.OUTLN 

Names

.OUTSTR - Output string to default output port 

.OUTLN - Output string with a <CR><LF> sequence

Codes

$0021 

$0022 

Description

.OUTSTR outputs a string of characters to the default output port. 

.OUTLN outputs a string of characters followed by a <CR><LF> 
sequence. 

Entry Conditions 

R03: Address of Þrst character 

R04: Address of last character+1 

Exit Conditions Different From Entry 

None 



.WRITE   .WRITELN

5-49

5

.WRITE  
.WRITELN 

Names

.WRITE - Output string without a <CR> or <LF>

.WRITELN - Output string with a <CR><LF> sequence

Codes

$0023 

$0024 

Description

These output routines are designed to output strings formatted 
with a count byte followed by the characters of the string. The user 
passes the starting address of the string. The output goes to the 
default output port. 

Entry Conditions 

R03: Address of string 

Exit Conditions Different From Entry 

None 

Note The string must be formatted such that the first byte 
(the byte pointed to by the passed address) contains the 
count (in bytes) of the string. There is no special 
character at the end of the string as a delimiter. 



.PCRLF

5-50

5

.PCRLF 

Name 

.PCRLF - Print a <CR><LF> sequence 

Code 

$0026 

Description

.PCRLF sends a <CR><LF> sequence to the default output port. 

Entry Conditions 

No arguments required. 

Exit Conditions Different From Entry 

None 



.ERASLN

5-51

5

.ERASLN 

Name 

.ERASLN - Erase Line 

Code 

$0027 

Description

.ERASLN is used to erase the line at the present cursor position. If 
a printer is used (hardcopy mode), a <CR><LF> sequence is issued 
instead. 

Entry Conditions 

No arguments required. 

Exit Conditions Different From Entry 

The cursor is positioned at the beginning of a blank line.



.WRITD   .WRITDLN

5-52

5

.WRITD  
.WRITDLN 

Names

.WRITD - Output string with data 

.WRITDLN - Output string with data and a <CR><LF> sequence

Codes

$0028

$0025 

Description

These trap routines take advantage of the monitor I/O routine 
which outputs a user string containing embedded variable Þelds. 
The user passes the starting address of the string and the address of 
a data list containing the data which is inserted into the string. The 
output goes to the default output port. 

Entry Conditions

R03: Address of string 

R04: Data list pointer. A separate data list arranged as follows:

Exit Conditions Different From Entry 

None 

Data list pointer Data for 1st variable in string 

Data for next variable 

Data for next variable



.WRITD   .WRITDLN

5-53

5

Notes 1. The string must be formatted such that the first byte 
(the byte pointed to by the passed address) contains 
the count (in bytes) of the string (including the data 
field specifiers, described in Note 2 below). 

2. Any data fields within the string must be represented 
as follows: 

|radix,fieldwidth[Z]|

where:

radix is the hexadecimal value for the base in which 
the data will be displayed (for example, A is base 10, 
and 10 is base 16.)

fieldwidth is the hexadecimal value for the number of 
characters this data is to occupy in the output. 

The data is right justified, and left-most characters 
are removed to make the data fit. The Z is included if 
it is desired to suppress leading zeros in output. The 
vertical bars (|) are required characters.

3. All data is to be placed in the data list as 32-bit words. 
Each time a data field is encountered in the user 
string, a word is read from the data list to be 
displayed. 

4. The data list is not destroyed by this routine.



.SNDBRK

5-54

5

.SNDBRK 

Name 

.SNDBRK - Send break 

Code 

$0029 

Description

.SNDBRK is used to send a break to the default output port. 

Entry Conditions 

No arguments required 

Exit Conditions Different From Entry 

The current default output port has sent break. 



.DELAY

5-55

5

.DELAY 

Name 

.DELAY - Timer delay routine 

Code 

$0043 

Description

.DELAY is used to generate accurate timing delays that are 
independent of the processor frequency and instruction execution 
rate. This routine uses the onboard timer for operation. You specify 
the desired delay count in milliseconds. The .DELAY system call 
returns to the caller after the speciÞed delay count is exhausted. 

Entry Conditions 

R03: Delay time in milliseconds (word) 

Exit Conditions Different From Entry 

None



.RTC_TM

5-56

5

.RTC_TM 

Name 

.RTC_TM - Time initialization for RTC 

Code 

$0050 

Description

.RTC_TM initializes Real-Time Clock with the time that is located in 
a user-speciÞed buffer. 

The data input format can be either ASCII or unpacked BCD. The 
order of the data in the buffer is:    

Entry Conditions 

R03: Time initialization buffer (address) 

Exit Conditions Different From Entry 

None

H H M M S S s c c

| |

begin 
buffer

buffer 
+ eight 
bytes

HH Hours
MM Minutes
SS Seconds
s Sign of calibration factor (+ or -)
cc Value of calibration factor



.RTC_DT

5-57

5

.RTC_DT 

Name 

.RTC_DT - Date initialization 

Code 

$0051 

Description

.RTC_DT initializes Real-Time Clock with the date that is located in 
a user-speciÞed buffer. 

The data input format can be either ASCII or unpacked BCD. The 
order of the data in the buffer is:     

Entry Conditions 

R03: Date initialization buffer (address) 

Exit Conditions Different From Entry 

None

Y Y M M D D d

| |

begin 
buffer

buffer 
+ six 
bytes

YY Year
MM Month
DD Day of month
d Day of week (1 = Sunday)



.RTC_DSP

5-58

5

.RTC_DSP 

Name 

.RTC_DSP - Display time from RTC 

Code 

$0052 

Description

.RTC_DSP displays the date and time on the console from the 
current cursor position. The format is as follows: 

DAY MONTH DD, YYYY hh:mm:ss.s

Entry Conditions 

No arguments required 

Exit Conditions Different From Entry 

The cursor is left at the end of the string.

DAY Day
MONTH Month
DD Day of month
YYYY Year
hh Hour
mm Minute
ss.s Second (to nearest tenth)



.RTC_RD

5-59

5

.RTC_RD 

Name 

.RTC_RD - Read the RTC registers 

Code 

$0053 

Description

.RTC_RD is used to read the Real-Time Clock registers. The data 
returned is in packed BCD. 

The order of the data in the buffer is:     

Entry Conditions 

R03: Buffer address where RTC data is to be returned 

Exit Conditions Different From Entry 

Buffer now contains date and time in packed BCD format.

Y M D d H M S c
| |

begin 
buffer

buffer 
+ eight 
bytes

Y Year (2 nibbles packed BCD)
M Month (2 nibbles packed BCD)
D Day of month (2 nibbles packed BCD)
d Day of week (2 nibbles packed BCD)
H Hour of 24 hour clock (2 nibbles packed BCD)
M Minute (2 nibbles packed BCD)
S Seconds (2 nibbles packed BCD)
c Calibration factor (MS nibble = 0 negative, 1 positive, LS 

nibble = value)



.REDIR

5-60

5

.REDIR 

Name 

.REDIR - Redirect I/O routine 

Code 

$0060 

Description

.REDIR is used to select an I/O port and at the same time invoke a 
particular I/O routine. The invoked I/O routine reads or writes to 
the selected port. 

Entry Conditions 

R03: Port 
R04: I/O routine to call
R05: R03 as required by the invoked System Call routine 
R06: R04 as required by the invoked System Call routine 
R07: R05 as required by the invoked System Call routine 
R08: R06 as required by the invoked System Call routine 

Exit Conditions Different From Entry 

R03: May be changed by I/O routine



.REDIR_I   .REDIR_O

5-61

5

.REDIR_I  
.REDIR_O 

Name

.REDIR_I - Redirect input 

.REDIR_O - Redirect output 

Codes

$0061

$0062 

Description

The .REDIR_I and .REDIR_O system calls are used to change the 
default port number of the input and output ports, respectively. 
This is a permanent change, that is, it remains in effect until a new 
.REDIR command is issued. 

Entry Conditions 

R03: Port Number (word)

Exit Conditions Different From Entry

R03: Is set to $FFFFFFFF if invalid port number was speciÞed, 
otherwise PPCBug console input (output) is redirected to the 
speciÞed port number.



.RETURN

5-62

5

.RETURN 

Name 

.RETURN - Return to PPCBug 

Code 

$0063 

Description

.RETURN is used to return control to PPCBug from the target 
program in an orderly manner. First, any breakpoints inserted in 
the target code are removed. Then, the target state is saved in the 
register image area. Finally, the routine returns to PPCBug. 

Entry Conditions 

No arguments required. 

Exit Conditions Different From Entry 

Control is returned to PPCBug. 

Note .RETURN must be used only by code that was started 
using PPCBug. 



.BINDEC

5-63

5

.BINDEC 

Name 

.BINDEC - Calculate the Binary Coded Decimal (BCD) equivalent 
of the binary number speciÞed

Code 

$0064 

Description

.BINDEC takes a 32-bit unsigned binary number and changes it to 
an equivalent BCD number. 

Entry Conditions 

R03: Argument: Hex number 

Exit Conditions Different From Entry 

R03: Bits 31 through 8: Zero 
R03: Bits 7 through 0: Decimal number (two most signiÞcant DIGITS) 
R04: Decimal number (next eight DIGITS) 



5

.CHANGEV

5-64

5System Calls

.CHANGEV 

Name

.CHANGEV - Parse value, assign to variable 

Code 

$0067 

Description

Attempt to parse value in user-speciÞed buffer. If user's buffer is 
empty, prompt user for new value, otherwise update integer offset 
into buffer to skip value. Display new value and assign to variable 
unless user's input is an empty string.

Entry Conditions 

R03: Address of 32-bit offset into user's buffer
R04: Address of user's buffer (pointer/count format string)
R05: Address of 32-bit integer variable to change 
R06: Address of string to use in prompting and displaying value 

Exit Conditions Different From Entry 

None. 



.STRCMP

5-65

5

.STRCMP 

Name

.STRCMP - Compare two strings (pointer/count) 

Code

$0068 

Description

Comparison for equality is made and Boolean ßags are returned to 
caller. 

Entry Conditions

R03: Address of string 1 
R04: Address of string 2 

Exit Conditions Different From Entry

R03: Bit 3 (ne) = 1; Bit 2 (eq) = 0, if strings are not equal.
R03: Bit 3 (ne) = 0; Bit 2 (eq) = 1, if strings are equal.



.MULU32

5-66

5

.MULU32 

Name

.MULU32 - Unsigned 32-bit x 32-bit multiply 

Code

$0069

Description

Two 32-bit unsigned integers are multiplied and the product is 
returned as a 32-bit unsigned integer. No overßow checking is 
performed. 

Entry Conditions

R03: 32-bit multiplier 
R04: 32-bit multiplicand 

Exit Condition Different From Entry 

R03: 32-bit product (result from multiplication) 



.DIVU32

5-67

5

.DIVU32 

Name

.DIVU32 - Unsigned 32-bit x 32-bit divide 

Code

$006A 

Description

Unsigned division is performed on two 32-bit integers and the 
quotient is returned as a 32-bit unsigned integer. The case of 
division by zero is handled by returning the maximum unsigned 
value $FFFFFFFF. 

Entry Conditions

R03: 32-bit divisor (value to divide by)
R04: 32-bit dividend (value to divide)

Exit Condition Different From Entry 

R03: 32-bit quotient (result from division) 



.CHK_SUM

5-68

5

.CHK_SUM 

Name

.CHK_SUM - Generate checksum for address range 

Code

$006B 

Description

This routine generates a checksum for an address range
that is passed in as arguments. 

Entry Conditions

R03: Beginning address 
R04: Ending address + 1 
R05: Scale indicator. Values are:

0 Default setting (WORD)
1 BYTE
2 HALF-WORD
4 WORD 

Exit Conditions Different From Entry

R03: Checksum

Notes 1. If a Bus Error results from this routine, then the 
debugger bus error exception handler is invoked and 
the calling routine is also aborted. 

2. The calling routine must insure that the beginning 
and ending addresses are on word boundaries or the 
integrity of the checksum cannot be guaranteed. 



.BRD_ID

5-69

5

.BRD_ID 

Name

.BRD_ID - Return pointer to board ID packet 

Code

$0070 

Description

This routine returns a pointer in R03 to the board identiÞcation 
packet. The packet is built at initialization time and contains 
information about the PowerPC board and peripherals it supports. 

The format of the board identiÞcation packet is shown below:

Field descriptions:

31 24 23 16 15 8 7 0

$00 Eye Catcher
$04 Rev. Month Day Year
$08 Packet Size Reserved
$0C Board Number Board SufÞx
$10 Options (such as coprocessor) Family CPU
$14 Controller LUN Device LUN
$18 Device Type Device Number
$1C Option-2

Eye Catcher Word containing ASCII string ÒBDIDÓ

Rev. Byte containing PPCBug revision (in BCD)

Month, Day, Year Three Bytes containing date (in BCD) the 
PPCBug code was frozen

Packet Size Half-Word containing the size of the packet 

Reserved Reserved for future use 



.BRD_ID

5-70

5

Refer to Appendix G for data on supported network controllers.

Board Number Half-Word containing the board number (in 
BCD) 

Board SufÞx Half-Word containing the ASCII board sufÞx 
(e.g. XT, A, 20) 

Options:

bits 0-3 Four bits containing CPU type:

CPU = 1; MPC620

CPU = 1; MPC601

CPU = 2; MPC602

CPU = 3; MPC603

CPU = 4; MPC604

bits 4-6 Three bits containing the Family type:

Fam = 2; MPC600 family

bits 7-31 The remaining bits deÞne various board speciÞc 
options:

Bit 7 set = FPC present

Bit 8 set = MMU present

Bit 9 set = MMB present

Controller LUN The Logical Unit Number for the boot device 
controller (refer to Appendices E and G)

Device LUN The Logical Unit Number for the boot device 
(refer to Appendices E and G)

Device Type The device type of the boot device (refer to the 
following table)

Option-2 Reserved for future use (zero in this 
implementation)



.BRD_ID

5-71

5

Entry Conditions

None

Exit Conditions Different From Entry

R03: Address (word)   Starting address of ID packet

Device 
Type

Device

00 Direct-Access Device (e.g., magnetic disk)

01 Sequential-Access Device (e.g., magnetic tape)

02 Printer Device

03 Processor Device

04 Write-Once Read-Multiple Device (e.g., some optical devices)

05 CD-ROM Device

06 Scanner Device

07 Optical Memory Device (e.g., some optical devices)

08 Medium Changer Device (e.g., jukeboxes)

09 Communications Device



.ENVIRON

5-72

5

.ENVIRON 

Name

.ENVIRON - Read/write environment parameters 

Code

$0071 

Description

The purpose of the TRAP is to allow a user program access to 
certain debugger environmental parameters. These parameters 
include default boot devices and start-up conÞgurations. 

Entry Conditions

R03: Parameter storage buffer 
R04: Size of the storage buffer 
R05: Operation type: 

Exit Conditions Different From Entry

For operations 1 & 2

0 Size in bytes of the information the debugger will pass 

1 Update the NVRAM with environmental parameters passed 

2 The debugger will update your parameter storage buffer with 
environmental information from the NVRAM. 

R03: 

0 No errors encountered, operation completed

1 Debugger has more data than the passed buffer 
could hold. 

Partial data transferred:

1 Checksum error occurred during the write 
update (write only) 



.ENVIRON

5-73

5

For operation 0

R03: The number of bytes required to store the debugger 
information.

Description Of Parameter Packets 

The data contained in the parameter storage area is organized as a 
set of data packets. Each data packet has the following structure:

Supported packets and formats:

7                        0

IdentiÞer

Number of 
bytes left 
in packet 

data

data

0 End of the list (End Record)

  0

  0

1 PPCBug Start-Up Parameters

  1

  $6

  System or debugger environment ßag 

  Field service menu ßag

  Remote start method ßag 

  Probe system for controllers ßag 

  Negate SYSFAIL always ßag 

  Reset local SCSI on board reset ßag 



.ENVIRON

5-74

5

2 Disk Auto Boot Information

  2

  $15

  Disk Auto Boot Enable 

  Disk Auto Boot at power-up only 

  Disk Auto Boot Controller Logical Unit Number

   Disk Auto Boot Device Logical Unit Number

  Disk Auto Boot Abort Delay

  Disk Auto Boot String to be passed to load program ($10 
  bytes in length)

3 ROM Boot Information

  3

  $C

  ROM Boot Enable 

  ROM Boot at power-up only 

  ROM Boot from VME bus 

  ROM Boot Abort Delay

  ROM Boot Starting Address (4 bytes in length)

  ROM Boot Ending Address (4 bytes in length)

4 NetBoot Information

  4

   $9

  NetBoot Enable 

  NetBoot at power up only 

  NetBoot Controller Logical Unit Number

  NetBoot Device Logical Unit Number

  NetBoot Abort Delay

  NetBoot parameter pointer (4 bytes in length)



.ENVIRON

5-75

5

For an explanation of each entry and deÞnition of options, refer to 
the ENV command.

The debugger will return all parameter packets on a read. During a 
write you may return only the packets that need to be updated; 
however, the packet may not be returned out of order. 

During an update, entries that have speciÞc values will be veriÞed. 
If an entry is in error, that parameter will be unchanged. 

5 Memory Size Information

  5

  $9

  Memory Size Enable ($4E or $59)

  Memory Size Starting Address (4 bytes)

  Memory Size Ending Address (4 bytes)



.PFLASH Function

5-76

5

.PFLASH Function

Name

.PFLASH - Program Flash memory 

Code

$0073 

Description

The purpose of this TRAP is to program Flash memory under 
program control. The address of the packet is passed as an 
argument to the function. The address of the packet is passed in the 
longword memory location pointed to by the current stack pointer. 
The packet contains the necessary arguments/data to program the 
Flash memory.

Entry Conditions

R03 ==> Address: Starting address of control packet word

Exit Conditions Different From Entry

None

Format of Flash Memory Control Packet

The Flash Memory Control Packet must be word (32 bit) aligned.

31 24 23 16 15 8 7 0

$00 Status Word Control Word

$04 Source Starting Address

$08 Number of Bytes to Program

$0C Destination Starting Address

$10 Instruction Execution Address



.PFLASH Function

5-77

5

Field descriptions: 

Control/Status 
Word

SpeciÞes control and status of the various phases 
of the Flash memory programming. This 
parameter has two 16-bit parts: bits #31 to #16 
specify status and bits #15 to #0 specify control. 

Source Starting 
Address

Specifies the source starting address of the 
data with which to program the Flash 
memory. Word (32-bit) address alignment is 
required for this parameter.

Number of Bytes 
to Program

Specifies the number of bytes of the source 
data (or the number bytes to program the 
Flash memory with). Word (32-bit) address 
alignment is required for this parameter.

Destination 
Starting Address

Specifies the starting address of the Flash 
memory to program the source data with. 
Word (32-bit) address alignment is required 
for this parameter.

Instruction 
Execution 
Address

Specifies the instruction execution address 
to be executed upon completion of the Flash 
memory programming. This parameter 
must meet the syntax of the reset vector of 
the applicable MPU architecture of the host 
product. This parameter is qualified with a 
control bit in the control/status word; 
execution will only occur when the control 
bit is set and no errors occur during 
programming/verification. This non-
execution on error can be invalidated by yet 
another control bit in the control/status 
word.



.PFLASH Function

5-78

5

The next table describes the definitions of the control and status bits 
in the Control/Status Word field. 

Note: When programming the Flash device in which the 
Flash memory is executing, bit 4 will have no effect. All 
programming operations that involve the Flash device 
in which the Flash memory is executing will be NON-
VERBOSE.

Type
Bit

Position
DeÞnition

Control 0 Execution address valid.

Control 1 Execute address on error as well.

Control 2 Execute local reset.

Control 3 Execute local reset on error as well.

Control 4 Non-verbose, no display messages. (NOTE)

Control 5-15 Unused, Reserved

Status 16 Error of some type, see remaining status bits.

Status 17 Address/Range alignment error.

Status 18 Flash Memory address range error. 

Status 19 Flash Memory erase error.

Status 20 Flash Memory write error.

Status 21 VeriÞcation (read after write) error.

Status 22 Time-Out during erase operation.

Status 23 Time-Out during byte write operation.

Status 24 Unexpected manufacturer identiÞer read from the device.

Status 25 Unexpected device identiÞer read from the device.

Status 26 Unable to initialize the Flash device to zero.

Status 27-29 Unused, Reserved

Status 30 Flash Memory program control driver downloaded.

Status 31 No return possible to caller.



.DIAGFCN

5-79

5

.DIAGFCN 

Name

.DIAGFCN - Diagnostic routine

Code

$0074 

Description

.DIAGFCN is a system-call-like routine, for the diagnostics. This 
system call provides the debugger and external software (operating 
systems) with a single-point-of-entry to information maintained by 
the Þrmware diagnostics.

The .DIAGFCN system call requires a single argument, which is a 
pointer to a diagfcn struct. This struct contains an Õunsigned intÕ 
which is the number of the diagnostic routine being requested, and 
a pointer to arguments for the routine to be executed:

unsigned int DIAGFCN number to execute
char * pointer to function arguments

This system call implements four diagnostic functions: 

01: .CHKFCN (check function)

02: .TESTSTAT (output test status report) 

03: .MEMSTAT (memory status) 

04: .ST_NMLIST (selftest name list)

01: .CHKFCN (check function)

The purpose of this function is to determine whether a given 
diagfcn is present in this revision of Þrmware. The argument 
pointer in the diagfcn struct simply points to an unsigned int 
variable, containing the diagfcn number to test for. If it exists, the 
syscall will return zero.



.DIAGFCN

5-80

5

02: .TESTSTAT (output test status report)

This diagcfn call allows access to selftest diagnostic results. The 
calling function must supply the diagcfn call with a pointer to two 
arguments (a structure containing two members):

struct ts_bufps
{
unsigned int size;
void *bufptr;
}

ÔbufptrÕ points to a buffer in memory, where the Þrst Ôsizeof(int)Õ 
bytes are reserved for an integer ÔcountÕ variable, and the rest of the 
buffer is reserved as a ÔcharÕ array for ASCII string data:

struct ts_bufs
{
unsigned int count;
unsigned char buf[1];}

The calling function typically Þrst makes a call with the ÔsizeÕ set to 
Ôsizeof(int)Õ, and ÔbufptrÕ pointing to a section of R/W memory, 
ÔsizeÕ bytes long. This causes the TESTSTAT function to calculate 
how large a buffer will be required to contain the test status report. 
The calculated value, plus Ôsizeof(int)Õ, will be returned in the 
location pointed to by ÔbufptrÕ.

int ÕsizeÕ

void *bufptr -------------------------> int count

(char buf)

   B

      U

         F

            F

               E

                  R



.DIAGFCN

5-81

5

The caller will then typically allocate the number of bytes of 
memory requested for the report, and call the TESTSTAT function 
again. This time, the ÔsizeÕ passed in should be at least as large as the 
count returned by the previous call to TESTSTAT. This function will 
then recalculate the memory required, compare that to the amount 
of memory supplied, and either return an error if insufÞcient buffer 
space has been allocated, or generate the report and append it to the 
count at the location pointed to by ÔbufptrÕ.

The test result strings placed in the buffer will have the format:

DEL Dir_Name DEL Test_Name DEL Description DEL F|P|B|M|N|E|? 0

The N and E status is stored for each test at diag init time (on reset), 
depending on whether the test is of type T_TEST (a ÔregularÕ test) 
or T_EVAL (a test that is only run manually). This is the only time 
these values will be stored for a test. All other status types 
destructively overwrite this initial value.

The M status will be saved for a test, whenever the test is executed, 
if masking has been enabled for this test. It will only overwrite an 
N status (and not an E).

Where DEL is a delimiter, either a semi-colon or a space

0 is a zero

F if the test has ever failed since the last reset

P if the test has executed to completion without failure

B if the test has been bypassed since the last reset

M if the test has been masked by the operator

N if the test has not been executed since the last reset

E if the test is an ÔevalÕ type, and is normally not 
executed.

? if an invalid test index is generated internal to the 
debugger. This should never occur.



.DIAGFCN

5-82

5

The B status indicates a test has decided not to run, due to some 
conÞguration limitation (an example would be when the MCECC 
tests report bypassed on a CPU that only contains parity-type 
RAM). The B status will overwrite the M, N, and E status.

The P status will only ever be saved, if the previous status for the 
test was B, M, N, or E. A P status will never overwrite an F status. If 
a test is aborted before completion, the previous status will remain, 
even if the test was passing up to the point of the abort.

The F status will overwrite all other values, and will never be 
changed without a reset.

These status strings are appended together in the buffer supplied 
by the caller. The initial delimiter character of each test result string 
should be read by the calling function, and used as the character to 
search for, when looking for separation between ÔwordsÕ of the 
result. Each single test result string could have a different delimiter. 
The 0 following each result string indicates the start of the next 
result.

A hex dump of report data might look like:

100  00000204  (‘count’)
104  5F 72 61 6D 5F 71 75 69  6B 5F 51 75 69 63 6B 20  _ram_quik_Quick 
114  57 72 69 74 65 2F 52 65  61 64 5F 4E 00 5F 72 61  Write/Read_N._ra
124  6D 5F 61 6C 74 73 5F 41  6C 74 65 72 6E 61 74 69  m_alts_Alternati
134  6E 67 20 4F 6E 65 73 2F  5A 65 72 6F 65 73 5F 4E  ng Ones/Zeroes_N
144  00 5F 72 61 6D 5F 70 61  74 73 5F 50 61 74 74 65  ._ram_pats_Patte
154  72 6E 73 5F 4E 00 5F 72  61 6D 5F 61 64 72 5F 41  rns_N._ram_adr_A
164  64 64 72 65 73 73 61 62  69 6C 69 74 79 5F 4E 00  ddressability_N.
174  5F 72 61 6D 5F 63 6F 64  65 5F 43 6F 64 65 20 45  _ram_code_Code E
. . .

This function will return an integer status. 0 (zero) is returned upon 
success. A result of -1  is returned if an error in the system call 
function occurred:

if ( 0 <= size < 4 )
   return -1;

if ( size == 4 )
   write ‘count’ to ‘bufptr’ location in RAM
   return 0;



.DIAGFCN

5-83

5

if ( 4 < size < count )
   write ‘count’ to ‘bufptr’ location in RAM
   return -1;

if ( count <= size )
   write ‘count’ to ‘bufptr’ location in RAM
   write status report to ‘bufptr + sizeof(int)’ in RAM
   return 0;

The result is returned in R03

03: .MEMSTAT (memory status)

This function implements a report mechanism for main memory 
diagnostics. This report is always of a Þxed size, and can therefore 
be called by higher level software that can not dynamically allocate 
buffer space.

This function reports combined status for each of certain test 
directories. This list includes RAM, MCECC, MEMC1, MEMC2, 
and ECC.

In the case of RAM tests, they cover a range of memory, and 
typically contain nothing that is board-speciÞc.

The MCECC and ECC tests do contain board-speciÞc code, and will 
cover segments of memory, rather than a single range. In this case, 
these tests will likely appear in the report multiple times, once for 
each segment of memory.

Since the test is only ever run once, over all segments, the status 
result will be identical for all reported instances. If one of the 
segments covered does not contain an ECC type of memory board, 
the results will contain a zero address range (beginning address = 
ending address).

The MEMC1 and MEMC2 tests are on a per-board basis. These tests 
are intended for the parity memory board, but contain one or more 
tests that are also appropriate for the MCECC memory board. Each 
test covers one segment of memory on the board under test. 



.DIAGFCN

5-84

5

This report may return:

1. Walk down through the diag directory, looking for test 
groups that match our list. 

2. When a match is found, walk down through the tests, ignore 
any functions that are not of the type T_TEST, check the 
status for each test (using the test index to look in the diagctl 
teststat array).

3. Create an overall status for the test group P, F, N, or B:

The upper address bound and lower address bound passed back to 
the caller, should be initialized to the values of the Memory Size 
Ending Address and the Memory Size Starting Address from 
NVRAM. These values to be returned should be overridden by any 
test conÞguration parameters (CF params) that might exist for the 
applicable test. A function will be inserted in each of the memory 
test groups that can be called and will return the upper and lower 
bounds.

N not executed

B bypassed

P passed

F failed

P Passed, which is returned when all of the T_TEST type 
functions in the test group have posted a ÔpassedÕ status. 
Any test in the group posting other than ÔpassedÕ will cause 
a different status to be returned.

F Failed, which is returned if any test of type T_TEST in the 
test group has posted a ÔfailedÕ status

N Not Executed, which is returned if any test in the group of 
type T_TEST was not executed. If any of the tests posted a 
ÔfailedÕ status, F is returned.

B Bypassed, which is returned if all of the T_TYPE functions 
in the test group have posted a bypassed  status



.DIAGFCN

5-85

5

The argument pointer in the diagfcn struct points to the report 
buffer. This buffer is 452 bytes long, and has the structure:

MEMSTAT will return a zero from the system call if there were no 
errors.

04: .ST_NMLIST (selftest name list)

This function will walk through the selftest directory structure, and 
generate a report consisting of test and group names that are 
present.

The report contains test group name, as well as the speciÞc test 
name. Format of the list is the same as that for the .TESTSTAT diag 
syscall. 

Each string in the list begins with the separator (unique delimiter 
character) that is to be used in the current line. The test group name 
comes next, followed by a separator. Next is the test name, followed 
by a NULL (\0). For example, #ram#pats<0>.

unsigned int number of valid entries
Entry 1 unsigned int 

unsigned int 
unsigned int 
char[16]

upper address bound
lower address bound
combined test status (P|F|N|B)
test group name (NULL terminated)

Entry 2 unsigned int 
unsigned int 
unsigned int 
char[16]

upper address bound
lower address bound
combined test status (P|F|N|B)
test group name (NULL terminated)

.

.

.
Entry 16 unsigned int 

unsigned int 
unsigned int 
char[16]

upper address bound
lower address bound
combined test status (P|F|N|B)
test group name (NULL terminated)



.DIAGFCN

5-86

5

The caller must provide a pointer to a structure when calling this 
function. The structure Þrst contains an ÕintÕ (4 bytes) giving the size 
of an available buffer to be used for output from this function. This 
ÕintÕ is immediately followed by the address (4 bytes) of the start of 
the buffer.

If this function is called with the ÕsizeÕ set to Õsizeof(int)Õ (4), then 
this function will return a single integer (4 bytes) in the buffer, 
containing the size of buffer needed to contain the list and the size. 
To get the list, the function needs to be called with a buffer ÕsizeÕ at 
least as large as is reported in the Þrst call. Anything smaller will 
result in a non-zero return status, and the list will not be generated.

The caller should place the structure pointer in processor register 
R03. An integer result will be returned, in place of the pointer 
passed in to this function. A zero (0) result indicates success, non-
zero indicates failure.

Entry Conditions

R03 contains the diagfcn struct address.

Exit Conditions Different From Entry

An integer status to the higher level is returned in R03.

int ÕsizeÕ

void *bufptr -------------------------> int count

(char buf)

   B

      U

         F

            F

               E

                  
R



.DIAGFCN

5-87

5

Examples

Example 1: .CHKFCN

PPC1-Bug>MM 10100;DI <Return>
00010100 59200074 SYSCALL .DIAGFCN <Return>
00010108 59200063 SYSCALL .RETURN <Return>

PPC1-Bug>RM R02 (pointer to DIAGFCN struct)
R03 =00000000? 20000 . <Return>

PPC1-Bug>MM 20000 <Return>
00020000 00000000? 1 <Return> (DIAGFCN #1, .CHKFCN)
00020004 00000000? 20008 <Return> (pointer to variable arguments)
00020008 00000000? 3 . <Return> (DIAGFCN # to verify)

PPC1-Bug>GO 10100 <Return> (check for the existence of DIAGFCN)
Effective address: 00010100

PPC1-Bug>RM R02 <Return> (0=FCN AVAIL)
R03 =00000000?  . <Return>

Example 2: .TESTSTAT

PPC1-Bug>MM 10100;DI <Return>
00010100 59200074 SYSCALL .DIAGFCN <Return>
00010108 59200063 SYSCALL .RETURN <Return>

PPC1-Bug>RM R02 <Return> (pointer to DIAGFCN struct)
R03 =00000000? 20000 . <Return>

PPC1-Bug>MM 20000 <Return>
00020000 00000000? 2 <Return> (DIAGFCN #2, .TESTSTAT)
00020004 00000000? 20008 <Return> (pointer to variable arguments)
00020008 00000000? 4 <Return> (size of buffer)
0002000c 00000000? 20100 . <Return> (pointer to buffer)

PPC1-Bug>BF 20100:800 FFFFFFFF <Return>
Effective address: 00020100
Effective count : &8192 

PPC1-Bug>GO 10100 <Return> (get buffer size needed for report)
Effective address: 00010100

PPC1-Bug>RM R02 <Return> (check return status, 0=OK)
R03 =00000000? . <Return>

PPC1-Bug>MM 20100 <Return>
00020100 000013B5? . <Return> (need Õ13B5Õ bytes for report)



.DIAGFCN

5-88

5

PPC1-Bug>RM R02 <Return> (pointer to DIAGFCN struct)
R03 =00000000? 20000 . <Return> 

PPC1-Bug>MM 20008 <Return> (size of buffer)
00020008 00000000? 13B5 . <Return> 

PPC1-Bug>BF 20100:800 FFFFFFFF <Return> 
Effective address: 00020100
Effective count : &8192

PPC1-Bug>GO 10100 <Return> (generate a report)
Effective address: 00010100

PPC1-Bug>RM R02 <Return> (check return status, 0=OK)
R03 =00000000? . <Return> 

PPC1-Bug>MD 20104 <Return> (display report)
00020104 2372616D 23717569 6B235175 69636B20 #ram#quik#Quick
00020114 57726974 652F5265 6164234E 00237261 Write/Read#N.#ra
00020124 6D23616C 74732341 6C746572 6E617469 m#alts#Alternati
00020134 6E67204F 6E65732F 5A65726F 6573234E ng Ones/Zeroes#N
00020144 00237261 6D237061 74732350 61747465 .#ram#pats#Patte
00020154 726E7323 4E002372 616D2361 64722341 rns#N.#ram#adr#A
00020164 64647265 73736162 696C6974 79234E00 ddressability#N.
00020174 2372616D 23636F64 6523436F 64652045 #ram#code#Code E

Example 3: .MEMSTAT

PPC1-Bug>MM 10100;DI <Return> 
00010100 59200074 SYSCALL .DIAGFCN <Return> 
00010108 59200063 SYSCALL .RETURN <Return> 

PPC1-Bug>RM R02 <Return> (pointer to DIAGFCN struct)
R03 =00000000? 20000 . <Return> 

PPC1-Bug>MM 20000 <Return> 
00020000 00000000? 3 <Return> (DIAGFCN #3, .MEMSTAT)
00020004 00000000? 20100 . <Return> (pointer to arguments -- output buffer)

PPC1-Bug>BF 20100:100 FFFFFFFF <Return> 
Effective address: 00020100
Effective count : &1024

PPC1-Bug>GO 10100 <Return> (output the RAM test status report)
Effective address: 00010100

PPC1-Bug>RM R02 <Return> (check return status, 0=OK)
R03 =00000000?  . <Return> 



.DIAGFCN

5-89

5

PPC1-Bug>MD 20100:40 <Return> (display report)
00020100 00000005 00000000 00000000 0000004E ...............N
00020110 72616D00 00000000 00000000 00000000 ram.............
00020120 00000000 00000000 0000004E 6D636563 ...........Nmcec
00020130 63000000 00000000 00000000 00000000 c...............
00020140 00000000 0000004E 6D636563 63000000 .......Nmcecc...
00020150 00000000 00000000 00000000 00000000 ................
00020160 0000004E 6D656D63 31000000 00000000 ...Nmemc1.......
00020170 00000000 00000000 00000000 0000004E ...............N
00020180 6D656D63 32000000 00000000 00000000 memc2...........
00020190 00000000 00000000 00000000 00000000 ................
000201A0 00000000 00000000 00000000 00000000 ................
000201B0 00000000 00000000 00000000 00000000 ................
000201C0 00000000 00000000 00000000 00000000 ................
000201D0 00000000 00000000 00000000 00000000 ................
000201E0 00000000 00000000 00000000 00000000 ................
000201F0 00000000 00000000 00000000 00000000 ................

Example 4: .ST_NMLIST

PPC1-Bug>MM 10100;DI <Return> 
00010100 59200074 SYSCALL .DIAGFCN <Return> 
00010108 59200063 SYSCALL .RETURN <Return> 

PPC1-Bug>RM R02 <Return> (pointer to DIAGFCN struct)
R03 =00000000? 20000 . <Return> 

PPC1-Bug>MM 20000 <Return> 
00020000 00000000? 4 <Return> (DIAGFCN #4, .ST_NMLIST)
00020004 00000000? 20008 <Return> (pointer to variable arguments)
00020008 00000000? 4 <Return> (size of buffer)
0002000C 00000000? 20100 . <Return> (pointer to buffer)

PPC1-Bug>BF 20100:800 FFFFFFFF <Return> 
Effective address: 00020100
Effective count : &8192

PPC1-Bug>GO 10100 <Return> (get buffer size needed for report)
Effective address: 00010100

PPC1-Bug>RM R02 <Return> (check return status, 0=OK)
R03 =00000000?  . <Return>

PPC1-Bug>MM 20100 <Return> 
00020100 00000AFE?  . <Return> (need ÕAFEÕ bytes for report)

PPC1-Bug>RM R02 <Return> (pointer to DIAGFCN struct)
R03 =00000000? 20000. <Return>



.DIAGFCN

5-90

5

PPC1-Bug>MM 20008 <Return> (size of buffer)
00020008 00000000? AFE . <Return>

PPC1-Bug>BF 20100:800 FFFFFFFF <Return> 
Effective address: 00020100
Effective count : &8192

PPC1-Bug>GO 10100 <Return> (generate a report)
Effective address: 00010100

PPC1-Bug>RM R02 <Return> (check return status, 0=OK)
R03 =00000000? . <Return>

PPC1-Bug>MD 20104 <Return> (display report)
00020104 2372616D 23717569 6B002372 616D2361 #ram#quik.#ram#a
00020114 6C747300 2372616D 23706174 73002372 lts.#ram#pats.#r
00020124 616D2361 64720023 72616D23 636F6465 am#adr.#ram#code
00020134 00237261 6D237065 726D0023 72616D23 .#ram#perm.#ram#
00020144 726E646D 00237261 6D236274 6F670023 rndm.#ram#btog.#
00020154 72616D23 70656400 2372616D 23726566 ram#ped.#ram#ref
.
.
.
00020BE4 23636368 62797000 23636D6D 756D7075 #cchbyp.#cmmumpu
00020BF4 33236363 68636F64 6500FFFF FFFFFFFF 3#cchcode.......



.SIOPEPS

5-91

5

.SIOPEPS 

Name

.SIOPEPS - Retrieve SCSI pointers 

Code

$0090 

Description

The purpose of this TRAP is to allow a user program to access the 
SCSI I/O Processor package contained in the PPCBug ROMs. This 
TRAP returns a list of pointers and table sizes that the user program 
uses to move the SCSI I/O Processor package from ROM to RAM. 
The SIOP package cannot be executed by a user program without 
being moved and edited. For instructions on how to move and edit 
the SIOP package, refer to the documentation for the SCSI I/O 
controller (refer to Appendix A, Related Documentation).

Entry Conditions

None

Exit Conditions Different From Entry

R03:   Pointer to the SIOP pointer and size table.

Description of SIOP Pointer and Size Table Packet 

Format for packet containing SIOP pointers and table sizes. All 
entries are 4 bytes in length.

siop_init Initialization routine entry

siop_cmd Command entry point entry

siop_int Interrupt handler entry

sdt_tinit SIOP debug trace initialization entry

sdt_alloc SIOP debug trace memory allocation entry

relocation Pointer to the relocation table for NCR scripts 



.SIOPEPS

5-92

5

script_ptr Pointer to the NCR scripts index pointer array

script_ptr_sz Size of the NCR scripts index pointer array

script_array_sz Size of the scripts array



5

.FORKMPU Function

5-93

5System Calls

.FORKMPU Function

Note This is a PPC1Bug system call for MVME4600 series or 
Dual Processor MTX motherboards.

Name

.FORKMPU - Fork MPU (Multiple MPU Configuration) 

Code

$0100

Description

.FORKMPU allows you to Fork (execute target code) on an MPU 
that is idle. The MPU register R1 is set to the user stack space. 
Interrupts are also disabled at the processor MSR register. 

Entry Conditions

R03 ==> MPU number (i.e., 0-1) 
R04 ==> Instruction Pointer of target code 

Exit Conditions Different from Entry

R03 ==>     0, successful fork 
-1, processor not idle 
-2, null or not word-aligned IP 
-3, invalid processor number 

R04 ==> No change 



.FORKMPUR Function

5-94

5

.FORKMPUR Function

Note This is a PPC1Bug system call for MVME4600 or dual 
processor MTX motherboards.

Name

.FORKMPUR - Fork Idle MPU with Register Set 

Code

$0101 

Description

This routine loads the user register set into the specified MPU (load 
and go). This command is analogous to the BUG command 
FORKWR. Refer to Chapter 3 for the command description. Read 
only registers are not restored but are present in the list. 

The format of the register set is shown below:

31 24 23 16 15 8 7 0
$000 GPR00
$004 GPR01
$008 GPR02
$00C GPR03
$010 GPR04
$014 GPR05
$018 GPR06
$01C GPR07
$020 GPR08
$024 GPR09
$028 GPR10
$02C GPR11
$030 GPR12
$034 GPR13
$038 GPR14
$03C GPR15
$040 GPR16
$044 GPR17
$048 GPR18
$04C GPR19
$050 GPR20



.FORKMPUR Function

5-95

5

$054 GPR21
$058 GPR22
$05C GPR23
$060 GPR24
$064 GPR25
$068 GPR26
$06C GPR27
$070 GPR28
$074 GPR29
$078 GPR30
$07C GPR31
$080 FPR00
$088 FPR01
$090 FPR02
$098 FPR03
$0A0 FPR04
$0A8 FPR05
$0B0 FPR06
$0B8 FPR07
$0C0 FPR08
$0C8 FPR09
$0D0 FPR10
$0D8 FPR11
$0E0 FPR12
$0E8 FPR13
$0F0 FPR14
$0F8 FPR15
$100 FPR16
$108 FPR17
$110 FPR18
$118 FPR19
$120 FPR20
$128 FPR21
$130 FPR22
$138 FPR23
$140 FPR24
$148 FPR25
$150 FPR26
$158 FPR27
$160 FPR28
$168 FPR29
$170 FPR30
$178 FPR31
$180 SR00
$184 SR01
$188 SR02
$18C SR03
$190 SR04

31 24 23 16 15 8 7 0



.FORKMPUR Function

5-96

5

$194 SR05
$198 SR06
$19C SR07
$1A0 SR08
$1A4 SR09
$1A8 SR10
$1AC SR11
$1B0 SR12
$1B4 SR13
$1B8 SR14
$1BC SR15
$1C0 SPR00
$1C4 SPR01
$1C8 SPR04
$1CC SPR05
$1D0 SPR06
$1D4 SPR08
$1D8 SPR09
$1DC SPR18
$1E0 SPR19
$1E4 SPR20
$1E8 SPR21
$1EC SPR22
$1F0 SPR25
$1F4 SPR26
$1F8 SPR27
$1FC SPR268
$200 SPR269
$204 SPR272
$208 SPR273
$20C SPR274
$210 SPR275
$214 SPR282
$218 SPR283
$21C SPR285
$220 SPR287
$224 SPR528
$228 SPR529
$22C SPR530
$230 SPR531
$234 SPR532
$238 SPR533
$23C SPR534
$240 SPR535
$244 SPR536
$248 SPR537
$24C SPR538
$250 SPR539
$254 SPR540

31 24 23 16 15 8 7 0



.FORKMPUR Function

5-97

5

$258 SPR541
$25C SPR542
$260 SPR543
$264 SPR936
$268 SPR937
$26C SPR938
$270 SPR939
$274 SPR940
$278 SPR941
$27C SPR942
$280 SPR952
$284 SPR953
$288 SPR954
$28C SPR955
$290 SPR956
$294 SPR957
$298 SPR958
$29C SPR976
$2A0 SPR977
$2A4 SPR978
$2A8 SPR979
$2AC SPR980
$2B0 SPR981
$2B4 SPR982
$2B8 SPR984
$2BC SPR986
$2C0 SPR987
$2C4 SPR990
$2C8 SPR991
$2CC SPR1008
$2D0 SPR1009
$2D4 SPR1010
$2D8 SPR1013
$2DC SPR1017
$2E0 SPR1019
$2E4 SPR1020
$2E8 SPR1021
$2EC SPR1022
$2F0 SPR1023
$2F4 IP
$2F8 MSR
$2FC CR
$300 FPSCR
$304 CPUIEN

31 24 23 16 15 8 7 0



.FORKMPUR Function

5-98

5

Field descriptions: 

GPR00 to GPR31 general purpose registers
FPR00 to FPR31 floating point registers
SR00 to SR15 segment registers
SPR0 to SPR1023 special purpose registers
IP instruction pointer
MSR machine state register
CR Condition register
FPSCR floating point status and control register
CPUIEN CPU interrupt enable

Refer to the microprocessor and CPU user manuals for a detailed 
description for each of these registers. 

Entry Conditions

R03 ==> MPU number (i.e., 0 - 1)
R04 ==> Address (word)       Starting address of register set 

Exit Conditions Different from Entry

R03 ==>     $00000000  - fork was successful 
$FFFFFFFF - processor is not idle 
$FFFFFFFE - invalid instruction pointer 
$FFFFFFFD - invalid processor number 



.IDLEMPU Function

5-99

5

.IDLEMPU Function 

Name

.IDLEMPU - Idle MPU (Multiple MPU Configuration)

Code

$0110 

Description

.IDLEMPU is used to idle the processor executing this system call. 

Entry Conditions

R03 ==> MPU number (i.e., 0-1)

Exit Conditions Different From Entry

R03==>0, idle successful
-1, processor already idle
-2, all other processors are idle
-3, invalid processor number



.IOINQ

5-100

5

.IOINQ 

Name

.IOINQ - Port Inquire 

Code

$0120 

Description

Writes the Port Control Structure at the user-speciÞed address. The 
Port Control Structure contains I/O Port Concurrent Mode and 
Port Control information about the named port. 

Entry Conditions

R0: Pointer to Port Control Structure as defined below. The Port 
Number, Board Name Pointer, and I/O Control Structure Pointer 
members of the Port Control Structure must be USER initialized 
before calling .IOINQ. 

Exit Conditions Different From Entry

R03: Pointer to Port Control Structure, or R03: NULL (Port not 
recognized error). The Port Control Structure will be modified as 
described above. 

Port Control Structure

The Port Control Structure is of the form:

31                24                23                16  15                  8                  7
0

$00 Port Number
$04 Board Name Pointer
$08 Channel
$0C Device Address



.IOINQ

5-101

5

Field descriptions:

$10 Concurrent Mode
$14 Modem ID
$18 I/O Control Structure Pointer
$1C Error Code
$20 Reserved
$24 Reserved
$28 Reserved

Port Number The Port Number as used here is analogous to the 
port number as required by the PF (Port Format) 
command. Port Numbers are assigned as follows: 

   $FFFFFFFE
   $FFFFFFFF
   $0 - $1F

Concurrent Port 
System Console 
Other currently assigned port 

Board Name 
Pointer

A pointer to a null ($00) terminated ASCII string 
which is the name of the target device. The 
maximum length of this string is 20 bytes. The device 
name as used here is analogous to the device name 
as required by the PF command. The following 
devices are supported: 

   VKIO
   PC16550 
   Z85C230 
   PC87303 

Channel On multi-port devices, this value speciÞes which 
port of the device is being referenced. Zero inclusive 
port numbering is assumed, i.e., Port A is Channel 
Number 0. 

Device 
Address

Base address of the I/O Device 

31                24                23                16  15                  8                  7
0



.IOINQ

5-102

5

Concurrent 
Mode

Nonzero Value ßags concurrent mode operation of 
this port. Zero ßags normal operation for this port. 

Modem ID Modem identiÞcation code for the modem associated 
with this port. The Modem ID code is ONLY valid if 
Concurrent Mode Operation is true for this port. The 
following modems are currently supported:

Modem ID Modem Type

1 Non-intelligent modem

2 Terminal - Refer to the Using the Service 
Call section in Appendix B.

3 UDS 2662

4 UDS 2980

5 UDS 3382

6 MVME733EXT

7 MVME733F

I/O Control 
Structure 
Pointer

A pointer to the port parameter/conÞguration table. 
See I/O Control Structure on page 5-103.

Error Code Contains error code, if any. The following error codes 
are deÞned: 

1 PF Error; couldn't format the Port with the 
user's parameters 

2 Port Number not recognized - the PPCBug 
does not have a deÞnition for the given Port 
Number 

3 Synchronization Error - can't turn on 
Concurrent Mode (Concurrent Mode already 
on) 

4 PPCBug has no deÞnition for the Port Number 
speciÞed 

5 Port Number not in range of -2 to $1F 



.IOINQ

5-103

5

I/O Control Structure

The I/O Control Structure is of the form:

6 No info available on CM port because CM not 
active 

7 All legal Port Numbers are currently in use 

8 All device driver Control Structures are 
currently in use - can't deÞne any more Port 
Numbers. 

9 Synchronization Error - cannot turn off CM. 
CM is already off. 

10 Contradictory Request. CM port number 
speciÞed but user's CM ßag is clear and no 
PPCBug port is currently operating in CM. 

11 Illegal Port number for .IODELETE trap call 

12 Alias for Error #11 

13 .IODELETE is not allowed to delete this port 
(PPCBug default port(s)). 

14 Alias for Error #8 

15 Alias for Error #7 

16 Unknown modem type. Returned Port 
Number is valid, but CM is NOT set. 

Reserved These locations are set to zero on return to the caller. 

31 24 23 16 15 8 7 0

$00 ctrlbits
$04 baud
$08 00 00 00 protocol
$0C 00 00 00 sync1
$10 00 00 00 sync2
$14 00 00 00 xonchar
$18 00 00 00 xoffchar



.IOINQ

5-104

5

Field descriptions:

ctrlbits The bits of this 32-bit wide integer are deÞned as 
high true ßags with the following meanings: 

Bit 00 odd parity

Bit 01 even parity

Bit 028 bit character word

Bit 037 bit character word

Bit 046 bit character word

Bit 055 bit character word

Bit 062 stop bits

Bit 071 stop bit

Bit 08 data terminal equipment

Bit 09 data computer equipment

Bit 10 cts control

Bit 11 rts control

Bit 12 xon/xoff control

Bit 13 hard copy ßag

baud Baud rate value for this port 

protocol A single ASCII character representing the desired 
communications protocol. The following characters 
are deÞned by the PPCBug. 

   A Async

   M Mono

   B Bisync

   G Gen

   S SDLC

   H HDLC



.IOINQ

5-105

5

Note Only the asynchronous protocol is supported by 
PPCBug.

sync1 8 bit value to be used as the sync1 character in the 
synchronous communication protocols 

sync2 8 bit value to be used as the sync2 character in the 
synchronous communication protocols 

xonchar Software ßow (on) control character 

xoffchar Software ßow (off) control character 



.IOINFORM

5-106

5

.IOINFORM 

Name

.IOINFORM - Port Inform 

Code

$0124 

Description

This trap will inform the PPCBug about change in I/O Port 
operation. The PPCBug updates its internal I/O control structures 
and writes Error Code and (possibly) Port Number in your Port 
Control Structure. 

If you wish to inform the PPCBug that you are turning on 
Concurrent Mode, you must set the Concurrent Mode field of the 
Port Control Structure. It is permissible to use a Port number of -2 
when turning on Concurrent Mode. The PPCBug will return a valid 
Port Number for your future reference. 

If you wish to inform the PPCBug that you are turning off 
Concurrent Mode operation, you must use a Port Number that has 
been returned by the .IOINQ or .IOINFORM system calls.

Entry Conditions

R03: Pointer to the Port Control Structure.

All members of the Port Control Structure, except Error Code and 
Reserved, as well as the Board Name String and I/O Control 
Structure must be user initialized before calling .IOINFORM. 

Exit Conditions Different From Entry

R03: Pointer to the Port Control Structure, or 
R03: NULL (Port not recognized error). 

The Port Control Structure will be modified as described above. 



.IOINFORM

5-107

5

Port Control Structure

The Port Control Structure is of the form:

31                24                23                16  15                  8                  7
0

$00 Port Number
$04 Board Name Pointer
$08 Channel
$0C Device Address
$10 Concurrent Mode
$14 Modem ID
$18 I/O Control Structure Pointer
$1C Error Code
$20 Reserved
$24 Reserved
$28 Reserved



.IOCONFIG

5-108

5

.IOCONFIG 

Name

.IOCONFIG - Port Configure 

Code

$0128 

Description

This trap will instruct the PPCBug to access the I/O device to 
change port operation and to update its internal I/O Control 
structures. The PPCBug writes ERROR CODE and (possibly) PORT 
NUMBER in your Port Control Structure. 

If you wish to inform the PPCBug that you are turning on 
Concurrent Mode, you must set the Concurrent Mode field of the 
Port Control Structure. It is permissible to use a Port number of -2 
when turning on Concurrent Mode. The PPCBug will return a valid 
Port Number for your future reference. 

If you wish to inform the PPCBug that you are turning off 
Concurrent Mode operation, you must use a PORT NUMBER that 
has been returned by the .IOINQ or .IOINFORM system calls.

Entry Conditions

R03: Pointer to Port Control Structure. 

All members of the Port Control Structure, except Error Code and 
Reserved, as well as the Board Name String and I/O Control 
Structure must be user initialized before calling .IOCONFIG.

Exit Conditions Different From Entry

R03: Pointer to Port Control Structure as defined above, or 
R03: NULL (Port not recognized error). 

The Port Control Structure will be modified as described above. 



.IODELETE

5-109

5

.IODELETE 

Name

.IODELETE - Port Delete 

Code

$012C 

Description

Causes the PPCBug to delete the named I/O port from its internal 
port list. The routine of this call is analogous to the PPCBug NOPF 
command. Note that .IODELETE cannot delete the Concurrent 
port. You must first use the .IOINFORM trap and then you may 
delete the port. 

Entry Conditions

R03: Pointer to Port Control Structure as defined above. 

The Port Number member of the Port Control Structure must be 
USER initialized before calling .IODELETE. The Board Name 
Pointer, Channel, Device Address, Concurrent Flag, Modem ID, 
and, I/O Control Pointer members of the Port Control Structure are 
not used by this trap. 

Exit Conditions Different From Entry

R03: Pointer to Port Control Structure as defined above, or 
R03: NULL (Port not recognized error). 

The Port Control Structure Error Code field will be written with an 
error code if any errors occurred. 

Port Control Structure

The Port Control Structure is of the form:



.IODELETE

5-110

5

31                24                23                16  15                  8                  7
0

$00 Port Number
$04 Board Name Pointer
$08 Channel
$0C Device Address
$10 Concurrent Mode
$14 Modem ID
$18 I/O Control Structure Pointer
$1C Error Code
$20 Reserved
$24 Reserved
$28 Reserved



.SYMBOLTA

5-111

5

.SYMBOLTA 

Name

.SYMBOLTA - Attach Symbol Table 

Code

$0130 

Description

This routine attaches a symbol table to the debugger. Once a 
symbol table has been attached, all displays of physical addresses 
are first looked up in the symbol table to see if the address is in 
range of any of the symbols (symbol data). If the address is in range, 
it is displayed with the corresponding symbol name and offset (if 
any) from the symbol base address (symbol data). In addition to the 
display, any command line input that supports an address as an 
argument can now take a symbol name for the address argument. 
The address argument is first looked up in the symbol table to see 
if it matches any of the addresses (symbol data) before conversion 
takes place. This command is analogous to the debugger command 
SYM. Refer to Chapter 3 for the command description. 

The format of the symbol table is shown below: 

31                24                23                16  15                  8                  7                  
0

$00 Number of Entries in Symbol Table
$04 Symbol Data #0
$08 Symbol Name #0

$20 Symbol Data #1
$24 Symbol Name #1



.SYMBOLTA

5-112

5

Field descriptions: 

Entry Conditions

R03: Address (word)       Starting address of symbol table 

Exit Conditions Different From Entry

R03: Bit 3 (ne) = 1; Bit 2 (eq) = 0 if errors (sanity check failed) 
R03: Bit 3 (ne) = 0; Bit 2 (eq) = 1 if no errors 

Number of Entries 
in Symbol Table

The number of entries in table 

Symbol Data 32-bit hexadecimal value. 
The symbol data Þelds must be ascending in 
value (sorted numerically). Upon execution of 
the system call, the debugger performs a sanity 
check on the symbol table with the above rules. 
The symbol table is not attached if the check 
fails.

Symbol Name A string of printable characters; may be null 
($00) terminated 



.SYMBOLTD

5-113

5

.SYMBOLTD 

Name

.SYMBOLTD - Detach Symbol Table 

Code

$0131 

Description

This routine detaches a symbol table from the debugger. This 
command is analogous to the debugger command NOSYM. Refer to 
Chapter 3 for the command description.

Entry Conditions

None 

Exit Conditions Different From Entry

None 





A

A-1

ARelated Documentation

Motorola Computer Group Documents
The publications listed below are on related products, and some 
may be referenced in this document. If not shipped with this 
product, manuals may be obtained in one of the following ways:

❏ Contact your local Motorola sales office,

❏ Access the World Wide Web site listed on the back cover of 
this and other MCG manuals and select ÒProduct LiteratureÓ, 
or

❏ (USA and Canada only) ÑContact the Literature Center via 
phone or fax at the numbers listed under Product Literature at 
MCGÕs World Wide Web site

Any supplements issued for a specific revision of a manual or guide 
are furnished with that document. The ÒtypeÓ and Òrevision levelÓ 
of a specific manual are indicated by the last three characters of the 
document number, such as Ò/IH2Ó (the second revision of an 
installation manual); a supplement bears the same number as a 
manual but has two additional characters that indicate the revision 
level of the supplement, for example Ò/IH2A1Ó (the first 
supplement to the second edition of the installation manual).

Please note that exact titles and part numbers of the documents are 
subject to change without notice.



Related Documentation

A-2

A

Table A-1.  Motorola Computer Group Documents 

Document Title
Publication

Number 

MCP750 CompactPCI Single Board Computer Installation and Use* MCP750A/IH1

MCP750 CompactPCI Single Board Computer ProgrammerÕs Reference 
Guide

MCP750A/PG

MVME2600 Series Single Board Computer Installation and Use V2600A/IH

MVME2600 Series Single Board Computer ProgrammerÕs Reference Guide V2600A/PG

MVME3600 Series Single Board Computer Installation and Use V3600A/IH

MVME4600 Series VME Processor Module Installation and Use V4600A/IH

MVME3600/4600 Series VME Processor Modules ProgrammerÕs Reference 
Guide

V3600A/PG

MVME2300 VME Processor Modules Installation and Use V2300A/IH

MVME2300 VME Processor Modules ProgrammerÕs Reference Guide V2300A/PG

MTX Embedded ATX Motherboard Installation and Use MTXA/IH

MTX Embedded ATX Motherboard ProgrammerÕs Reference Guide MTXA/PG

PMCSpan PMC Adapter Carrier Module Installation and Use PMCSPANA/IH

PPCBug Firmware Package UserÕs Manual (Parts 1 and 2) PPCBUGA1/UM
PPCBUGA2/UM

PPCBug Diagnostics Manual PPCDIAA/UM

TMCP700 Transition Module Installation and Use TMCP700A/IH1

MVME712M Transition Module and P2 Adapter Board Installation and 
Use

VME712MA/IH

MVME761 Transition Module Installation and Use VME761A/IH



Microprocessor and Controller Documents

A-3

A

Microprocessor and Controller Documents
For additional information, refer to the following table for 
manufacturersÕ data sheets or userÕs manuals. As an additional 
help, a source for the listed document is also provided. Please note 
that in many cases, the information is preliminary and the revision 
levels of the documents are subject to change without notice.

To further assist your development effort, Motorola has collected 
some of the non-Motorola documents in this list from the suppliers. 
.

Table A-2.  Microprocessor and Controller Documents  

Document Title and Source
Publication

Number

PowerPC 603TM RISC Microprocessor Technical Summary
     Literature Distribution Center for Motorola
     Telephone: (800) 441-2447
     FAX: (602) 994-6430 or (303) 675-2150
     E-mail: ldcformotorola@hibbertco.com

MPC603/D

PowerPC 603TM RISC Microprocessor UserÕs Manual
     Literature Distribution Center for Motorola
     Telephone: (800) 441-2447
     FAX: (602) 994-6430 or (303) 675-2150
     E-mail: ldcformotorola@hibbertco.com
OR
     IBM Microelectronics
     Mail Stop A25/862-1
     PowerPC Marketing
     1000 River Street
     Essex Junction, Vermont 05452-4299
     Telephone: 1-800-PowerPC
     Telephone: 1-800-769-3772
     FAX: 1-800-POWERfax
     FAX: 1-800-769-3732

MPC603UM/AD

MPR603UMU-01



Related Documentation

A-4

A

MPC750TM RISC Microprocessor UserÕs Manual
     Motorola Literature Distribution Center
     Telephone: (800) 441-2447 or (303) 675-2140
     FAX: (303) 675-2150
     E-mail: ldcformotorola@hibbertco.com
    INTERNET: http://motorola.com/sps
    INTERNET: http://www.mot.com/PowerPC

MPC750UM/AD

PowerPC 604TM RISC Microprocessor UserÕs Manual
     Literature Distribution Center for Motorola
     Telephone: (800) 441-2447
     FAX: (602) 994-6430 or (303) 675-2150
     E-mail: ldcformotorola@hibbertco.com
OR
     IBM Microelectronics
     Mail Stop A25/862-1
     PowerPC Marketing
     1000 River Street
     Essex Junction, Vermont 05452-4299
     Telephone: 1-800-PowerPC
     Telephone: 1-800-769-3772
     FAX: 1-800-POWERfax
     FAX: 1-800-769-3732

MPC604UM/AD

MPR604UMU-01

PowerPCTM Microprocessor Family: The Programming Environments
     Motorola Literature Distribution Center
     Telephone: (800) 441-2447
     FAX: (602) 994-6430 or (303) 675-2150
     E-mail: ldcformotorola@hibbertco.com
OR
     IBM Microelectronics
     Mail Stop A25/862-1
     PowerPC Marketing
     1000 River Street
     Essex Junction, Vermont 05452-4299
     Telephone: 1-800-PowerPC
     Telephone: 1-800-769-3772
     FAX: 1-800-POWERfax
     FAX: 1-800-769-3732

MPCFPE/AD

MPRPPCFPE-01

Table A-2.  Microprocessor and Controller Documents  (Continued)

Document Title and Source
Publication

Number



Microprocessor and Controller Documents

A-5

A

MPC2604GA Integrated Secondary Cache for PowerPC Microprocessors
  Data Sheets
     Literature Distribution Center for Motorola
     Telephone: (800) 441-2447
     FAX: (602) 994-6430 or (303) 675-2150
     E-mail: ldcformotorola@hibbertco.com

MPC2604GA

AlpineTM VGA Family - CL-GD543X/Õ4X Technical Reference Manual
  Fourth Edition
     Cirrus Logic, Inc. (or nearest Sales OfÞce)
     3100 West Warren Avenue
     Fremont, California 94538-6423
     Telephone: (510) 623-8300
     FAX: (510) 226-2180

385439

DECchip 21040 Ethernet LAN Controller for PCI
  Hardware Reference Manual
     Digital Equipment Corporation
     Maynard, Massachusetts
     DECchip Information Line
     Telephone (United States and Canada): 1-800-332-2717
     TTY (United States only): 1-800-332-2515
     Telephone (outside North America): +1-508-568-6868

EC-N0752-72

DECchip 21140 PCI Fast Ethernet LAN Controller
  Hardware Reference Manual
     Digital Equipment Corporation
     Maynard, Massachusetts
     DECchip Information Line
     Telephone (United States and Canada): 1-800-332-2717
     TTY (United States only): 1-800-332-2515
     Telephone (outside North America): +1-508-568-6868

EC-QC0CA-TE

Table A-2.  Microprocessor and Controller Documents  (Continued)

Document Title and Source
Publication

Number



Related Documentation

A-6

A

PC87303VUL (Super I/OTM Sidewinder Lite) Floppy Disk Controller,
  Keyboard Controller, Real-Time Clock, Dual UARTs, IEEE 1284 Parallel
  Port, and IDE Interface
     National Semiconductor Corporation
     Customer Support Center (or nearest Sales OfÞce)
     2900 Semiconductor Drive
     P.O. Box 58090
     Santa Clara, California 95052-8090
     Telephone: 1-800-272-9959

PC87303VUL

PC87307VUL ( Super I/OTM Enhanced Sidewinder Lite) Floppy Disk
  Controller,, Keyboard Controller, Real-Time Clock, Dual UARTs,
  IEEE 1284 Parallel Port, and IDE Interface
     National Semiconductor Corporation
     Customer Support Center (or nearest Sales OfÞce)
     2900 Semiconductor Drive
     P.O. Box 58090
     Santa Clara, California 95052-8090
     Telephone: 1-800-272-9959

PC87307VUL

PC87308VUL (Super I/OTM Enhanced Sidewinder Lite) Floppy Disk
  Controller, Keyboard Controller, Real-Time Clock, Dual UARTs,
  IEEE 1284 Parallel Port, and IDE Interface
     National Semiconductor Corporation
     Customer Support Center (or nearest Sales OfÞce)
     2900 Semiconductor Drive
     P.O. Box 58090
     Santa Clara, California 95052-8090
     Telephone: 1-800-272-9959

PC87308VUL

PC16550 UART
     National Semiconductor Corporation
     Customer Support Center (or nearest Sales OfÞce)
     2900 Semiconductor Drive
     P.O. Box 58090
     Santa Clara, California 95052-8090
     Telephone: 1-800-272-9959

PC16550DV

Table A-2.  Microprocessor and Controller Documents  (Continued)

Document Title and Source
Publication

Number



Microprocessor and Controller Documents

A-7

A

MK48T559 Address/Data Multiplexer 8K x 8 TIMEKEEPERTM SRAM 
Data Sheet
     SGS-Thomson Microelectronics Group
     Faxback (Document-on-Demand) system
     Carrollton, TX
     Telephone: (972) 4667-7788

M48T559

SYM 53CXX (was NCR 53C8XX) Family PCI-SCSI I/O Processors 
Programming Guide
     Symbios Logic Inc.
     1731 Technology Drive, suite 600
     San Jose, CA95110
     Telephone: (408) 441-1080
     Hotline: 1-800-334-5454

T72961II

SCC (Serial Communications Controller) UserÕs Manual
  (for Z85230 and other Zilog parts)
     Zilog, Inc.
     210 East Hacienda Ave., mail stop C1-0
     Campbell, California 95008-6600
     Telephone: (408) 370-8016
     FAX: (408) 370-8056

DC-8293-02

AMD-645ª Peripheral Bus Controller Data Sheet
     Advanced Micro Devices, Inc.
or
VT82C586B PIPC
PCI Integrated Peripheral Controller
PC97 Compliant PCI-to-ISA Bridge with ACPI,
Distributed DMA, Plug and Play, Master Mode
PCI-IDE Controller with Ultra DMA-33
USB Controller, Keyboard Controller, and RTC
     VIA Technologies, Inc.
     5020 Brandin Court
     Fremont, CA 94538
     Telephone: (510) 683-3300
     FAX: (510) 683-3301

21095A/O

VT82C586B

Table A-2.  Microprocessor and Controller Documents  (Continued)

Document Title and Source
Publication

Number



Related Documentation

A-8

A

Digital Semiconductor 21154
PCI-to-PCI Bridge Data Sheet
     Digital Equipment Corporation
     Maynard, MA 
     Telephone (United States and Canada): 1-800-332-2717
     Telephone (Outside North America): +1-508-628-4760

EC-R24JA-TE

Z8536 CIO Counter/Timer and Parallel I/O Unit
  Product SpeciÞcation and UserÕs Manual
  (in Z8000® Family of Products Data Book)
     Zilog, Inc.
     210 East Hacienda Ave., mail stop C1-0
     Campbell, California 95008-6600
     Telephone: (408) 370-8016
     FAX: (408) 370-8056

DC-8319-00

W83C553 Enhanced System I/O Controller with PCI Arbiter (PIB)
     Winbond Electronics Corporation
     Winbond Systems Laboratory
     2730 Orchard Parkway
     San Jose, CA 95134
     Telephone: 1-408-943-6666
     FAX: 1-408-943-6668

W83C553

Universe User Manual
     Tundra Semiconductor Corporation
     603 March Road
     Kanata, ON K2K 2M5, Canada
     Telephone: 1-800-267-7231
     Telephone: (613) 592-1320
OR
     695 High Glen Drive
     San Jose, California 95133, USA
     Telephone: (408) 258-3600
     FAX: (408) 258-3659

Universe
(Part Number 
9000000.MD303.01)

Table A-2.  Microprocessor and Controller Documents  (Continued)

Document Title and Source
Publication

Number



Related Specifications

A-9

A

Related Specifications
For additional information, refer to the following table for related 
specifications. As an additional help, a source for the listed 
document is also provided. Please note that in many cases, the 
information is preliminary and the revision levels of the documents 
are subject to change without notice.

Table A-3.  Related Specifications 

Document Title and Source
Publication

Number

ANSI Small Computer System Interface-2 (SCSI-2), Draft Document
     Global Engineering Documents 
     15 Inverness Way East 
     Englewood, CO 80112-5704 
     Telephone: 1-800-854-7179 
     Telephone: (303) 792-2181 

X3.131.1990

Compact PCI SpeciÞcation
     PCI Industrial Manufacturers Group (PICMG)
     401 Edgewater Pl, Suite 500
     WakeÞeld, MA 01880
     Telephone: 781-246-9318
     Fax: 781-224-1239

CPCI Rev. 2.1
Dated 9/2/97



Related Documentation

A-10

A

VME64 SpeciÞcation
     VITA (VMEbus International Trade Association)
     7825 E. Gelding Drive, Suite 104
     Scottsdale, Arizona 85260-3415
     Telephone: (602) 951-8866
     FAX: (602) 951-0720

NOTE: An earlier version of this speciÞcation is available as:

Versatile Backplane Bus: VMEbus
     Institute of Electrical and Electronics Engineers, Inc.
     Publication and Sales Department
     345 East 47th Street
     New York, New York 10017-21633
    Telephone: 1-800-678-4333
OR
Microprocessor system bus for 1 to 4 byte data
     Bureau Central de la Commission Electrotechnique Internationale
     3, rue de Varemb�
     Geneva, Switzerland

ANSI/VITA 1-1994

ANSI/IEEE
 Standard 1014-1987

IEC 821 BUS

IEEE - Common Mezzanine Card SpeciÞcation (CMC)
     Institute of Electrical and Electronics Engineers, Inc.
     Publication and Sales Department
     345 East 47th Street
     New York, New York 10017-21633
     Telephone: 1-800-678-4333

P1386 Draft 2.0

IEEE - PCI Mezzanine Card SpeciÞcation (PMC)
     Institute of Electrical and Electronics Engineers, Inc.
     Publication and Sales Department
     345 East 47th Street
     New York, New York 10017-21633
     Telephone: 1-800-678-4333

P1386.1 Draft 2.0

Table A-3.  Related Specifications (Continued)

Document Title and Source
Publication

Number



Related Specifications

A-11

A

Bidirectional Parallel Port Interface SpeciÞcation
     Institute of Electrical and Electronics Engineers, Inc.
     Publication and Sales Department
     345 East 47th Street
     New York, New York 10017-21633
     Telephone: 1-800-678-4333

IEEE Standard 1284

Peripheral Component Interconnect (PCI) Local Bus SpeciÞcation, 
  Revision 2.1
     PCI Special Interest Group
     2575 NE Kathryn St. #17
     Hillsboro, OR 97124
     Telephone: (800) 433-5177 (inside the U.S.)
                      or (503) 693-6232 (outside the U.S.)
     FAX: (503) 693-8344

PCI Local Bus
SpeciÞcation

PowerPC Reference Platform (PRP) SpeciÞcation,
  Third Edition, Version 1.0, Volumes I and II
     International Business Machines Corporation
     Power Personal Systems Architecture
     11400 Burnet Rd.
     Austin, TX 78758-3493
     Document/SpeciÞcation Ordering
     Telephone: 1-800-PowerPC
     Telephone: 1-800-769-3772
     Telephone: 708-296-9332

MPR-PPC-RPU-02

ATX SpeciÞcation
   Version 2.01
     created by Intel Corporation
     available on the World Wide Web through Teleport Internet Services
     at URL http://www.teleport.com/~atx/index.htm

IEEE Standard for Local Area Networks: Carrier Sense Multiple Access 
with Collision Detection (CSMA/CD) Access Method and Physical Layer 
SpeciÞcations 
     Institute of Electrical and Electronics Engineers, Inc. 
     Publication and Sales Department 
     345 East 47th Street 
     New York, New York 10017-21633 
     Telephone: 1-800-678-4333 

IEEE 802.3

Table A-3.  Related Specifications (Continued)

Document Title and Source
Publication

Number



Related Documentation

A-12

A

Information Technology - Local and Metropolitan Networks - Part 3: 
Carrier Sense Multiple Access with Collision Detection (CSMA/CD)
Access Method and Physical Layer SpeciÞcations 
     Global Engineering Documents 
     15 Inverness Way East 
     Englewood, CO 80112-5704 
     Telephone: 1-800-854-7179 
     Telephone: (303) 792-2181 
(This document can also be obtained through the national standards body of 
member countries.) 

ISO/IEC 8802-3

Interface Between Data Terminal Equipment and Data Circuit-Terminating 
Equipment Employing Serial Binary Data Interchange (EIA-232-D) 
     Electronic Industries Association 
     Engineering Department 
     2001 Eye Street, N.W. 
     Washington, D.C. 20006 

ANSI/EIA-232-D 
Standard

Table A-3.  Related Specifications (Continued)

Document Title and Source
Publication

Number



B

B-1

BSystem Menu

Introduction
Enter the MENU command at either the PPC1-Bug>  or 
PPC1-Diag>  prompt to display the System Menu, which is shown 
below.

1) Continue System Start Up
2) Select Alternate Boot Device
3) Go to System Debugger
4) Initiate Service Call
5) Display System Test Errors
6) Dump Memory to Tape

Menu Items

Continue System Start-up

Enter 1 to continue the system start-up and boot sequence. The 
system self-tests, followed by the boot routine, either NVRAM Boot 
List Boot, Auto Boot, ROMboot, or Network Auto Boot. The boot 
routine, and the boot device, are selectable in the ENV command. 
Refer to Chapter 3 for information on setting the ENV command 
parameters.

If the self-test fails to complete correctly, it may display an error 
message. Refer to Appendix C for explanations of these error 
messages. Refer to the PPC1Bug Diagnostics Manual for 
explanations of some of the self-tests and test error messages.

Select Alternate Boot Device

Enter 2 to receive the following prompts for entering an alternate 
boot device:



Menu Items

B-2

B
*Enter Alternate Boot Device:
Controller: 
Drive     : 
File      :". 

The devices supported by the PPCBug are listed in Appendix E. 
After entry of a selected device and a carriage return, the menu is 
redisplayed for another selection (normally Continue System 
Start Up ).

Go to System Diagnostics

Enter 3 to go to the PPCBug diagnostics directory. You may return 
to the System Menu by entering the MENU command at the 
PPC1-Diag>  prompt.

Initiate Service Call

Enter 4 to initiate a service call.

This function is normally used to complete a connection to a service 
center which can then use the concurrent mode (the concurrent 
operation of a modem connected terminal and the system console) 
to assist a customer with a problem. 

Refer to Using the Service Call Function on page B-5 for details on this 
menu item.

Display System Test Errors

Enter 5 to display any errors accumulated by the extended 
confidence test suite when last run. This can be a useful field service 
tool. 

Dump Memory to Tape

Enter 6 to save an image of memory on to tape for later analysis. The 
output of tape dump is two or more files on the user-specified 
controller and device. The first file (File 0) contains information 



System Menu

B-3

Babout the Tape Dump Utility that created the tape, certain 
hardware specific information, and, an array of Tape Dump File 
Map Entries. 

Other files (files 1 through n) written by the Tape Dump Utility are 
simply image(s) of memory at the time the Tape Dump Utility was 
invoked. 

This implementation of the Tape Dump Utility allows you to define 
multiple blocks of memory, each block written as a separate file on 
the tape. The Tape Dump File Map Entries in File 0 describe the 
address ranges of system memory that each tape file contains.

The File Zero Structure is of the form:

struct fil0 {
  char magic[4];               /* magic number */
  char who_do[4];              /* who made dump (Bug or OS) */
  int file0sz;                 /* File zero size */
  int complete;                /* tape dump completed flag */
  int Trev;                    /* Revision of this structure */
  struct brdid bd_info;        /* Board Identification Packet */
  struct tddir tdir[MAXFILES]; /* Tape Dump File Map Entries */
};

The Board Identification/Information structure (brdid) is identical 
to the Board ID packet returned by the System Call .BRD_ID. 

The constant FZS_REV is the File Zero Structure revision in Binary 
Coded Decimal (BCD) representation. FZS_REV is defined as $110 
(that is, rev. 1.10). Member Trev is set to FZS_REV. 

The constant MAXFILES determines the maximum number of Tape 
Dump File Map Entries in the File 0 Structure Template and, 
congruently, the maximum number of memory blocks that can 
define and dump. MAXFILES is defined as 20. 

The Tape Dump File Map Entry structure is of the form: 

struct tddir {
  unsigned int fileno;               /* file number */
  unsigned int saddr;                /* memory starting address */
  unsigned int eaddr;                /* memory ending address */
};



Menu Items

B-4

B The first member of the Tape Dump File Map Entry structure is File 
Number (fileno). The normal range of values for fileno is from 1 to 
MAXFILES. The value $FFFFFFFF in fileno flags an invalid and 
unused File Map Entry.

Tape Dump Example: 

1) Continue System Start Up
2) Select Alternate Boot Device
3) Go to System Debugger
4) Initiate Service Call
5) Display System Test Errors
6) Dump Memory to Tape
Enter Menu #: 6<Return>

Do you wish to dump memory (N/Y)? <Return>
Controller LUN = 04, Device LUN = 00.
Change DLUN and/or CLUN (Y/N)? <Return>
Define memory blocks to be dumped.
File Number:1
Starting Address   = 00000000? <Return>
Ending Address + 1 = 01000000? 10000<Return>
Define another memory block  (Y/N)? Y<Return>
File Number:2
Starting Address   = 80000 <Return>
Ending Address + 1 = 100000 <Return>
Define another memory block  (Y/N)? <Return>

The following memory blocks have been defined:
File: 1  Start: 00000000  End: 00010000
File: 2  Start: 00080000  End: 00100000

Insert tape..Do you want to continue (N/Y)? <Return>
Rewind command executing

Erase Tape (Y/N)? <Return>

Retension Tape (Y/N)? <Return>
Writing file # 0
Writing file # 1
Writing file # 2

Dump finished. You may remove tape.



System Menu

B-5

B
1) Continue System Start Up
2) Select Alternate Boot Device
3) Go to System Debugger
4) Initiate Service Call
5) Display System Test Errors
6) Dump Memory to Tape
Enter Menu #:

Using the Service Call Function

Operation

The service call function displays a series of interactive prompts. 
Any question requiring a Y or N answer defaults to N if only 
Return is entered.

First, the system asks the modem type:

Modem Type:
 0) Terminal -            -                        9600
 1) Manual   -            -                        1200
 2) Internal -            UDS-2122662              1200
 3) Internal MVME712A/AM  UDS-V.22b                2400
 4) Internal MVME714M     UDS-V.22b                2400
 5) External MVME733EXT   UDS-V.32/V.42b,FasTalk   9600
 6) Internal MVME733F     UDS-V.32/V.42b           9600
Your Selection (2)? 0

Select 0 (Terminal) to connect any ASCII terminal in place of a 
modem via a null modem or equivalent cable. This is useful in 
certain trouble-shooting applications for providing a slave terminal 
without the necessity of dialing through a modem. Refer to 
Terminal Connection on page B-11.

Select 1 (Manual) connects directly to the modem in an ASCII 
terminal mode, allowing any nonstandard protocol modem to be 
used. Refer to Manual Connection on page B-9.

ÓUDSÓ signifies an internal modem that is compatible with the UDS 
modem protocol.



Using the Service Call Function

B-6

B When an option is selected, the system asks: 
Do you want to change the baud rate from 1200 (Y/N)? 

If you answer Y (the default is N), the system prompts: 

Baud rate [300, 1200, 2400, 4800, 9600] 1200? 

Enter a baud rate from the and press Return. If you do not enter a 
value, the baud rate remains as previously set. 

The system then asks: 

Is the modem already connected to customer service (Y/N)? 

When a connection has been made to a customer service center (or 
any other remote device), hang up does not automatically occur; it 
is an operation that you initiate. If a system reset has occurred, for 
instance, a hang up does not take place, and connection to customer 
service is still in effect. In this case, it is not necessary or desirable to 
attempt to reconnect on a connection that is already in effect.

When an answer is entered, the system responds:

Enter System ID Number:

This number is typically assigned to your system by customer 
service. The customer service computer may do a check to assure 
the validity of this number for login purposes. 

The system responds with: 

Wait for an incoming Call or Dial Out (W/D)? 

Enter W to wait for the other computer to dial in to complete the 
connection. Enter D for dialing out yourself. If D is selected, the 
system asks: 
UDS Modem:

(T) = Tone Dialing (Default), (P) = Pulse Dialing
(=) = Pause and Search for a Dial Tone
(,) = Wait 2 Seconds

The system then asks: 

Enter phone number:



System Menu

B-7

BEnter the number, including area code if required. Do not use any 
separators except for a comma (,) or equal sign (=) if required to 
search for a dial tone (depending on which modem protocol was 
selected), such as when dialing out of a location having an internal 
switchboard. Additionally, preface the number with one of the 
dialing selections. The dialing selection can also be changed within 
the number being dialed if necessary if an internal dialing system 
takes a different dialing mode than the external world switched 
network. When connection has been made, the system reports: 

Service Call in progress - Connected

The remote system can now send either the MESS (Message 
Control) to send a message, or the RCC (Request for Concurrent 
Console) to enter the concurrent mode.

Sending Messages

Use the MESS command to send a message from the customer 
service center to the console of the calling system. The message is a 
string of data no more than 80 bytes in length terminated with a 
carriage return. The ROM code moves the string to the console 
followed by a carriage return and a line feed. 

This command can be used to send messages to the operator (such 
as ÒPlease stand byÓ) to give an indication of activity while various 
processes are taking place at the customer service center. Many of 
these message commands may be sent while in the command 
mode.

Concurrent Mode

In concurrent mode, all input from either the port, the console, or 
the remote, is taken simultaneously. All output is sent to both ports 
concurrently. Use the RCC command to request concurrent 
console. A prompt is displayed. If the operator enters Y, a single 
character y is sent to the customer service system, followed by the 
console menu as displayed on the operators console. If the operator 
enters N, the single character f is sent to the customer service 
system and the call is terminated.



Using the Service Call Function

B-8

B Either the console or the remote console may terminate the 
concurrent mode at any time by typing CTRL-a. The phone line is 
hung up by the PPC ROM code and a message is displayed 
indicating the end of the concurrent mode. 

The most likely command sequence at this point is a message 
command to indicate connection to the remote system, followed by 
a request for concurrent mode operation. When these are received, 
the user system asks: 

Concurrent mode (Y/N)? 

Enter Y to enter concurrent mode. The system then presents the 
information: 

Select Menu Item #8 to exit Concurrent Mode 

The menu is redisplayed and concurrent mode is in effect. Any 
normal system operation can now be initiated at either the local or 
remote connected terminal, including system reboot. 

1) Continue System Start Up
2) Select Alternate Boot Device
3) Go to System Debugger
4) Initiate Service Call
5) Display System Test Errors
6) Dump Memory to Tape
7) Start Conversation Mode
8) Exit Concurrent Mode

Two new entries, Start Conversation Mode  and Exit 
Concurrent Mode , appear in the menu during concurrent mode.

Conversation mode allows either party to initiate a direct 
conversation mode between the remote system terminal and the 
local terminal. 

The conversation mode can be selected and used at any time, 
though the prompt line is not displayed in normal operation. 

Terminating the Conversation and Concurrent Modes

To exit the conversation mode, but remain in concurrent mode, 
press Return, type a period (.) and press Return again.



System Menu

B-9

BTo exit the conversation mode as well as to terminate the 
concurrent mode and hang up the modem, type Ctrl-a.

The system then redisplays the selection menu for further operator 
action. 

You may terminate the concurrent connection by selecting menu 
item 4 (Initiate Service Call) while a call is underway. The system 
asks:

Do you wish to disconnect the remote link (Y/N)?

If you answer N, the system gives the option of returning to (or 
entering) the conversation mode:

Do you wish the conversation mode (Y/N)? 

Enter Y to return to conversation mode. Enter N to redisplay the 
menu.

The system responds with the following series of messages if the 
disconnect option is chosen: 

Wait for concurrent mode to terminate

Hanging up the Modem

Concurrent Mode Terminated

The last message is followed by the system menu without the 
Start Conversation Mode  and Exit Concurrent Mode 
selections. 

Manual Connection

Enter Manual mode by selecting Manual as the modem type.

A manual modem connection allows use of modems that have a 
defined ASCII command set but do not adhere to any of the 
standard protocols supported. 



Using the Service Call Function

B-10

B When manual modem control is attempted, the user terminal is in 
effect connected directly to the modem for control purposes. This is 
called transparent mode. When in transparent mode, you must take 
responsibility for modem control, and for informing the system of 
when connection has taken place.

If manual mode selection is made in response to the Is the modem 
already connected  prompt, the following dialog takes place:

Manual mode displays all prompts as in system mode, through the 
Enter System ID Number . After the ID number has been 
entered, the system prompts: 

Manually call CSO and when you are Connected, 
exit the Transparent Mode

Escape character: $01=^A

Enter the dial command for the modem (such as atdt). Enter Ctrl-a 
when connection is made or if for any reason a connection cannot 
be made. Because the system has no knowledge of the status of the 
system when transparent mode is exited, it asks: 

Did you make the connection (Y/N)? 

If you answer Y to the question, the system then continues with a 
normal dialog with the remote system, which would be for the 
remote system to send the banner message followed by a request 
for concurrent mode operation (the concurrent operation of a 
modem connected terminal and the system console). If N is the 
response, the system asks:

Terminate CSO conversation (Y/N)?

Enter Y to re-enter transparent mode and prompt: 

Manually hang up the modem and when you are done,
exit the transparent mode
Escape character: $01 = ̂ A

The system is now in normal operation, and the menu is 
redisplayed. 



System Menu

B-11

BTerminal Connection

Enter Terminal mode by selecting Terminal as the modem type.

Operation with the terminal mode is similar to system mode, except 
that after the Baud rate  prompt, the system automatically enters 
concurrent mode. Additionally, exiting concurrent mode does not 
give prompts and messages referring to the hang up sequence. All 
other system operation is the same as other modes of connection. 





C

C-1

CPPCBug Messages

Introduction
This section lists the PPCBug messages.

Refer to the PPC1Bug Diagnostics UserÕs Manual for error messages 
displayed while running various diagnostics commands.

Error Messages

Table C-1.  Debugger Error Messages 

Debugger Error Message Meaning
Bad VID Block String ÔMOTOROLAÕ is not found 

while booting, and boot sequence 
aborts 

Concurrent Mode Already Active System is already active in concurrent 
mode in CM command

Concurrent Mode Not Active Error message when trying to 
deactivate an inactive system in 
NOCM command 

Concurrent Mode Setup Failure Error in establishing communications 
with port/device in CM command)

Concurrent Mode Terminated With Failure Error closing communications link in 
NOCM command

Error Status: xxx Disk communication error status word 
when IOP command, or .DSKRD or 
.DSKWR system call, are 
unsuccessful. xxx is the error code. 
Refer to Appendix F for details. 

*** Illegal argument *** Improper argument in known 
command

*** Illegal Option *** Improper option in MM command
Invalid command Unknown command



Other Messages

C-2

C

Other Messages

*** Invalid LUN *** Invalid controller and device selected 
in IOP or IOT commands 

*** Invalid Range *** Invalid range entered in BC, BF, BI, 
BM, BS, or DU commands 

*** Missing Argument *** Necessary argument was not entered
NON-EXISTENT MNEMONIC Entry error in MM command with DI 

option
NON-EXISTENT OPERAND Entry error in MM command with DI 

option
part of S-record data Non-hex character is encountered in 

data Þeld in LO or VE commands 
RAM FAIL AT $ nnnnnnnn  Parity is not correct at address 

$nnnnnnnn during a BI command 
STRING POOL FULL, LAST LINE DISCARDED String pool size (511 characters) is 

exceeded during MA command 
The following record(s) did not verify

S . . . . . . . . ZZ . . . . . . . . CS

Match not found in the LO or VE 
commands. ZZ is the non-matching 
byte and CS is the non-matching 
checksum.

Verify passes Successful VE command

Table C-2.  Other Messages 

Message Meaning
PPC1-Bug> Debugger prompt
PPC1-Diag> Diagnostic prompt
At Breakpoint Program has stopped at breakpoint 
Autoboot in progress... To Abort hit <BREAK> Autoboot has begun 
--Break Detected-- BREAK key on console has stopped 

operation 
COLD Start Vectors have been initialized

Table C-1.  Debugger Error Messages (Continued)

Debugger Error Message Meaning



PPCBug Messages

C-3

C
Concurrent Mode Active The speciÞed port echoes the system 

console terminal after CM command 
Data = $nn nn is truncated data cut to Þt data Þeld 

size during BF or BV commands 
Effective address: nnnnnnnn Data location (BC, BF, BI, BM, BS, BV, 

and DU commands); Location of 
program execution (GD, GN, GO, and 
GT commands)

Effective count: &nnn Number of data patterns acted on 
during BC, BF, BI, BS, or BV 
commands; or the number of bytes 
moved during DU command 

Enter Menu #: Enter a System Menu option.
Escape character: $HH=AA Exit code from transparent mode, in 

hex (HH) and ASCII (AA) during TM 
command

Initial data = $XX, increment = $YY Data was truncated to Þt the Þeld 
length selected in the BF or BV 
commands. XX is starting data and YY 
is truncated increment.

-last match extends over range boundary- String found in BS command ends 
outside speciÞed range

Logical unit $XX unassigned Port number referenced in PA or PF 
command is unassigned. $XX is the 
port LUN. 

M= Prompt for macro deÞnitions during 
MA command

NO MACROS DEFINED No macros have been deÞned (when 
using MA command to list available 
macros)

No printer attached No printer was attached prior to 
running the NOPA command

Table C-2.  Other Messages (Continued)

Message Meaning



Other Messages

C-4

C
-not found- String not found in BS command
OK to proceed (y/n)? Interlock prompt before writing 

macros in the MAW command or 
before conÞguring port in PF 
command. 

Press “RETURN” to continue More lines of output are available in 
the BS and HE commands

WARM Start Vectors have not been initialized

Table C-2.  Other Messages (Continued)

Message Meaning



D

D-1

DS-Record Format

Introduction
The S-record format for output modules was devised for the 
purpose of encoding programs or data files in a printable format for 
transfer between computer systems. The transfer process can thus 
be visually monitored and the S-records can be edited more easily.

S-Record Content
When viewed by the user, S-records are essentially character 
strings made of five fields: the record type, record length, memory 
address, code/data, and checksum. Each byte of binary data is 
encoded as a 2-character hexadecimal number: the first character 
representing the high-order 4 bits, and the second the low-order 4 
bits of the byte. 

The contents of the S-record field are:

Table D-1.  S-Record Fields

Field
Printable

Characters 
Contents

Type 2 S-record type, such as S0 or S1
Record
Length

2 The count of the character pairs in the record, excluding the 
type and record length

Address 4, 6, or 8 The 2-, 3-, or 4-byte address at which the data Þeld is to be 
loaded into memory

Code/Data 0-n From 0 to n bytes of executable code, memory-loadable data, 
or descriptive information. For compatibility with 
teletypewriters, some programs may limit the number of bytes 
to as few as 28 (56 printable characters in the S-record).



S-Record Types

D-2

D

Each record may be terminated with a carriage return, line feed, or 
null. Additionally, an s-record may have an initial field to 
accommodate other data such as line numbers generated by some 
time-sharing system.

Accuracy of transmission is ensured by the record length (byte 
count) and checksum fields.

S-Record Types
Eight types of S-records have been defined to accommodate the 
several needs of the encoding, transportation, and decoding 
functions. The various Motorola upload, download, and other 
record transportation control programs, as well as cross-
assemblers, linkers, and other file-creating or debugging programs, 
utilize only those S-records which serve the purpose of the 
program. For specific information on which S-records are 
supported by a particular program, the user's manual for that 
program must be consulted.

Checksum 2 The least signiÞcant byte of the one's complement of the sum 
of the values represented by the pairs of characters making up 
the record length, address, and the code/data Þelds

Table D-1.  S-Record Fields

Field
Printable

Characters 
Contents



S-Record Format

D-3

D

An S-record-format module may contain S-records of the following 
types:

Note The upper bytes are assumed to be zero in addresses 
that are smaller than 4 bytes (32 bits).

S0 The header record for each block of S-records. The code/data 
Þeld may contain any descriptive information identifying the 
following block of S-records. Under the operating system, a 
resident linker command can be used to designate module 
name, version number, revision number, and description 
information which will make up the header record. The 
address Þeld is normally zeroes.

S1 A record containing code/data and the 2-byte (16-bit) address 
at which the code/data is to reside

S2 A record containing code/data and the 3-byte (24-bit) address 
at which the code/data is to reside

S3 A record containing code/data and the 4-byte (32-bit) address 
at which the code/data is to reside

S5 A record containing the number of S1, S2, and S3 records 
transmitted in a particular block. This count appears in the 
address Þeld. There is no code/data Þeld.

S7 A termination record for a block of S3 records. The address 
Þeld may optionally contain the 4-byte address of the 
instruction to which control is to be passed. There is no 
code/data Þeld.

S8 A termination record for a block of S2 records. The address 
Þeld may optionally contain the 3-byte address of the 
instruction to which control is to be passed. There is no 
code/data Þeld.

S9 A termination record for a block of S1 records. The address 
Þeld may optionally contain the 2-byte address of the 
instruction to which control is to be passed. Under the 
operating system, a resident linker command can be used to 
specify this address. If not speciÞed, the Þrst entry point 
speciÞcation encountered in the object module input will be 
used. There is no code/data Þeld.



Creating S-Records

D-4

D

Only one termination record is used for each block of S-records. S7 
and S8 records are usually used only when control is to be passed 
to a 3- or 4-byte address. Normally, only one header record is used, 
although it is possible for multiple header records to occur.

Creating S-Records
S-record-format programs may be created with the DU command. 
You may also use dump utilities, debuggers, the operating system 
resident linkage editor, or several cross-assemblers or cross-linkers. 
On the operating system, a build utility allows an executable load 
module to be built from S-records, and has a counterpart utility 
which allows an S-record file to be created from a load module.

Several programs are available for downloading a file in S-record 
format from a host system to an 8-bit, 16-bit, or 32-bit 
microprocessor-based system.

Example
A typical S-record-format module, as printed or displayed, is 
shown below:

S00A00006765745F7274630D
S2240400007C8402A6908300007C8502A6908300044E800020000000000065040000006504002442
S20C0400200000000000000000CF
S804040000F7

The module consists of one S0 record, two S3 records, and one S8 
record.



S-Record Format

D-5

D

The S0 record is explained as follows:

The first S2 record is explained as follows:

S0 S-record type S0, indicating that it is a header 
record for this block of S-records

0A Hexadecimal 0A (decimal 10), indicating that 10 
character pairs (or ASCII bytes) follow

0000 Four-character 2-byte address Þeld; hexadecimal 
address 0000 (the address Þeld is not used by the 
debugger, the debugger ignores this record)

6765745F727463 Module name in ASCII, get_rtc

0D The checksum of this header record

S2 S-record type S2, indicating that it is a code/data 
record to be loaded/veriÞed at a 3-byte address

24 Hexadecimal 24 (decimal 36), indicating that 36 
character pairs, representing 36 bytes of binary 
data, follow

040000 Six-character 3-byte address Þeld; hexadecimal 
address 00040000, where the code/data which 
follows is to be loaded

7C8402...040024 The next 32 character pairs of the Þrst S2 record are 
the ASCII bytes of the actual program code/data. 
In this assembly language example, the 
hexadecimal opcodes of the program are written in 
the sequence in the code/data Þelds of the S2 
records:

Address Opcode Instruction

00040000 7C8402A6 MFSPR R4,4

00040004 90830000 STW R4,$0(R3) ($00000000)

00040008 7C8502A6 MFSPR R4,5

0004000C 90830004 STW R4,$4(R3) ($00000004)

00040010 4E800020 BCLR 20,0

00040014 00000000 WORD $00000000



Example

D-6

D

The second S2 record is explained as follows:

The S8 record is explained as follows:

00040018 65040000 ORIS R4,R8,$0

0004001C 65040024 ORIS R4,R8,$24

00040020 00000000 WORD $00000000

00040024 00000000 WORD $00000000

42 The checksum of this S2 record.

S2 S-record type S2, indicating that it is a code/data 
record to be loaded/veriÞed at a 3-byte address.

0C Hexadecimal 0C (decimal 12), indicating that 12 
character pairs, representing 12 bytes of binary 
data, follow.

040020 Six-character 3-byte address Þeld; hexadecimal 
address 00040020, where the code/data which 
follows is to be loaded.

0000000000000000 The next 8 character pairs of the second S2 record 
are the ASCII bytes of the actual program 
code/data.

CF The checksum of this S2 record.

S8 S-record type S8, indicating that it is a termination 
record

04 Hexadecimal 04, indicating that four character 
pairs (4 bytes) follow

040000 The address Þeld, indicating the address of the 
instruction to which control may be passed 
(program entry point)

F7 The checksum of this S8 record

Address Opcode Instruction



S-Record Format

D-7

D

Each printable character in an S-record is encoded in a hexadecimal 
representation of the binary bits which are actually transmitted. 
Below is the example S0 record, as sent in hexadecimal, with an 
ascii representation:   

 T  L  A  C/D  Ch

S 0 0 A 0 0 0 0 6 7 6 5 7 4 5 F 7 2 7 4 6 3 0 D

5930 3041 30303030 3637363537343546373237343633 3044





E

E-1

EDisk and Tape Controllers

Disk and Tape Support
PPCBug supports the disk and tape controller devices listed in Table E-1. 
The controller addresses listed are the base addresses for each controller. 
The controller can be addressed by the CLUN during the PBOOT or IOP 
commands, or during system calls .DSKRD or .DSKWR.

Notes * Varies, depending on the userÕs SCSI setup.

** These PCI addresses for your disk and tape 
controllers can vary depending on your board and 
your particular setup. See the ÒiotÓ command for 
further details on displaying the PCI address for 
specific devices.

Table E-1.  Disk and Tape Controllers Supported

CLUN Controller
Controller
Address

Number 
of Devices

 1 PC8477 $800003F0 1
 2 PC87303IDE $800001F0 2
x NCR53C810 Any PCI** *
x NCR53C825 Any PCI** *
x NCR53C875 Any PCI** *
x SL82C105 Any PCI** 4
x PBC-EIDEF1 Any PCI** 4



Floppy Drive Configuration Parameters

E-2

E

Floppy Drive Configuration Parameters
The following table lists the parameters used for configuring floppy 
disk drives with the IOT command and the .DSKCFIG system call.

Table E-2.  Floppy Drive Configuration Parameters

ConÞguration Parameter
Floppy Types and Formats

PCXT8 PCXT9 PCXT9_3 PCAT PS2 SHD

Sector Size
0- 128 1- 256 2- 512
3-1024 4-2048 5-4096 = 2 2 2 2 2 2
Block Size:
0- 128 1- 256 2- 512
3-1024 4-2048 5-4096 = 1 1 1 1 1 1
Sectors/Track 8 9 9 F 12 24
Number of Heads = 2 2 2 2 2 2
Number of Cylinders = 28 28 50 50 50 50
Precomp. Cylinder = 28 28 50 50 50 50
Reduced Write Current 
Cylinder =

28 28 50 50 50 50

Step Rate Code = 0 0 0 0 0 0
Single/Double DATA 
Density =

D D D D D D

Single/Double TRACK 
Density =

D D D D D D

Single/Equal_in_all Track 
Zero Density =

E E E E E E

Slow/Fast Data Rate = S S S F F F
Other Characteristics

Number of Physical Sectors 0280 02D0 05A0 0960 0B40 1680
Number of Logical Blocks 
(in hundreds)

0500 05A0 0B40 12C0 1680 2D00

Number of Bytes (decimal) 327680 368460 737280 1228800 1474560 294912
0

Media Size/Density 5.25/DD 5.25/DD 3.5/DD 5.25/HD 3.5/HD 3.5/ED



Disk and Tape Controllers

E-3

E

Note 1.All numerical parameters are in hexadecimal unless 
otherwise noted.

2. PS2 is the default format for PPCBug.

3. The SHD format is supported effective with 
PPC1Bug version 1.2.





F

F-1

FDisk Status Codes

Introduction
The status word returned by the disk system call routine flags an 
error condition if it is nonzero. The most significant byte of the 
status word reflects controller independent errors, and they are 
generated by the disk trap routines. The least significant byte 
reflects controller dependent errors, and they are generated by the 
controller. The status word is shown below:

Because of the nature of the SCSI and IDE/EIDE Host Adapters, 
additional status may be returned. The format of the additional 
error status is as follows:

SCSI

The SCSI command is a byte that identifies the command that was 
issued in which the Sense Key was returned. The Sense Key is a byte 
that is returned in Request Sense Data buffer (byte number two). 
Refer to the ANSI X3T9.2 SCSI Specification.

15                     8  7                     0

Controller-Independent Controller-Dependent

15                     8  7                     0

SCSI Command Sense Key



Introduction

F-2

F

ATA (Hard Disks/CD-ROM Drives)

The ATA command is the byte that identifies the command creating 
the error condition reported in the error register. For the definition 
of the error register contents, refer to the AT Attachment Interface 
with Extensions (ATA-2) specification (X3T10-948D).

ATAPI (CD-ROM Drives)

For ATAPI devices, the upper byte reflects the command causing 
the failure reported in the Sense Key/Error Reg byte. If the sense 
key (bits 4 through 7) contains a nonzero value, then two more 
bytes containing additional sense data is returned as follows:

For the definition of the error register contents, sense key data, 
ASC, and ASQ, refer to the ATA Packet Interface for CD-ROMs 
specification (SFF-8020i).

15                     8  7                     0

ATA Command Error Register Contents

15                     8  7                     0

ATAPI Command Sense Key Error Reg

15                     8  7                     0

ASC ASQ



Disk Status Codes

F-3

F

Controller-Independent Status Codes
The definitions for the controller-independent errors are defined in 
Table F-1, shown below.

SCSI Firmware Status Codes 
The SCSI firmware returns codes for the SCSI Bus status and the 
SCSI I/O Processor (NCR53C810, NCR53C825, or NCR53C875) 
status. Table F-2 lists the codes and a description of each.

The debugger returns a single word (16 bits) for an error code. The 
upper byte is Controller-Independent, and is assigned by the 
debugger. The lower byte is Controller-Dependent. It is formed by 
selecting one of two bytes of error information returned by the 
firmware, either the SIOP) Status or the SCSI Bus Status.

Table F-1.  Controller-Independent Status Codes  

Code Description

$00 No error detected
$01 Invalid controller type
$02 Controller descriptor not found
$03 Device descriptor not found
$04 Controller already attached
$05 Descriptor table not found
$06 Invalid command packet
$07 Invalid address for transfer
$08 Block conversion error
$09 Invalid parameter in conÞguration
$0A Transfer data count mismatch error
$0B Invalid status received in command packet
$0C Command aborted via break



SCSI Firmware Status Codes

F-4

F

If the SCSI Bus Status byte returned by the firmware is non-zero, 
this byte is returned as the Controller-Dependent code, and the 
SIOP Status byte is thrown away. If the SCSI Bus Status is zero, the 
SIOP Status byte is returned.

Therefore, there is dual use of the Controller-Dependent error code 
byte for error code bytes $02, $04, $08, $10, $14, and $18. For 
example, if the Controller-Dependent value returned by the 
debugger is $02, this code could have two possible meanings:    

SCSI Bus Status: Check Condition

SIOP Status: Command aborted - SCSI bus reset 

Table F-2.  SCSI Firmware Status Codes  

Code Description

SCSI Bus Status

$00 Good completion
$02 Check condition
$04 Condition met good
$08 Busy
$10 Intermediate good
$14 Intermediate condition met good
$18 Reservation conßict
$22 Command terminated
$28 Queue full
SIOP Status

$00 Good status
$01 No operation bits were set
$02 Cmd aborted - SCSI bus reset
$03 Cmd aborted - bus device reset message
$04 Cmd aborted - abort message
$05 Cmd aborted - abort tag message
$06 Cmd aborted - clear queue message
$07 Data overßow - Too much data
$08 Data underrun - Not enough data



Disk Status Codes

F-5

F

$09 Clock faster than 75 MHz
$0A Bad Clock parameter - ASCII clock value Zero or Non-ASCII 
$0B Queue depth too large (> 255)
$0C Selection timeout
$0D Reselection timeout
$0E Bus error during a data phase
$0F Bus error during a non-data phase
$10 Illegal NCR script instruction
$11 Command aborted - unexpected disconnect
$12 Command aborted - unexpected phase change
$13 SCSI bus hung during command
$14 Data phase not expected by user
$15 Data phase was in wrong direction
$16 Incorrect phase following select
$17 Incorrect phase following message-out
$18 Incorrect phase following data
$19 Incorrect phase following command
$1A Incorrect phase following status
$1B Incorrect phase following rptr message
$1C Incorrect phase following sdptr message
$1D No identify message after re-selection
$1E SIOP failed during script patching
$1F SIOP not attached to SCSI bus

Table F-2.  SCSI Firmware Status Codes  (Continued)

Code Description



ATA/ATAPI Firmware Status Codes

F-6

F

ATA/ATAPI Firmware Status Codes

Note The marketing terms IDE and EIDE are often used 
when describing the ATA and ATAPI interface and 
protocol. The underlying technologies behind these are 
defined by the ATA and ATAPI standards proposed by 
the Accredited Standards Committee (ASC) and the 
Small Form Factor Committee (SFFC) respectively. 
ATA falls under the X3T10 umbrella of the ASC, while 
the proposed ATAPI specification is described by the 
SFF-8020 document set forth by the SFFC. SFFC has 
also proposed a number of other ATA-related 
documents. This PPCBug userÕs manual uses either the 
IDE/EIDE or the ATA/ATAPI nomenclature, as seems 
appropriate.

The debugger returns a single 16-bit word for an error code unless 
additional status is available. For ATA commands, the additional 
status comprises one 16-bit word; for ATAPI, up to two 16-bit 
works are returned.

The first 16-bit word contains the ATA/ATAPI command and the 
contents of the error register. In response to ATAPI commands, it 
also contains the sense key code. For non-zero sense key values, an 
additional 16-bit word is returned, concatenated to the second 16-
bit word. This third status word indicates the ASC and ASQ values 
returned by the device in response to an ATAPI packet command.

Below is a list of controller dependent error codes and a short 
description of each for the IDE and EIDE controllers. For definition 
of the error register and the sense codes, refer to the appropriate 
ATA and/or ATAPI documents:

ATA - AT Attachment Interface with Extensions (ATA-2) 
-X3T10-948D
ATAPI - ATA Packet Interface for CD-ROMs 
- SFF-8020i.



Disk Status Codes

F-7

F

Table F-3.  ATA/ATAPI Controller-Dependent Errors

Code Description

$00 Good Status
$01 Error Register contents valid
$02 Index error (vendor speciÞc)
$04 Correctable data error
$08 Data transfer failure (Data Request from device missing)
$10 Bit 4 error (vendor speciÞc)
$20 Device fault
$40 Device not ready
$80 Device busy (command/data transfer in progress)
$F1 Controller initialization failure
$F2 Invalid parameter
$F3 Sector size not supported
$F4 Command not supported
$F7 Data Overßow
$F8 Controller Configuration Error





G

G-1

GNetwork Controller Devices

PPCBug supports the DEC21040 and DEC21140 devices for 
Ethernet network control.

The default address is $80804000. Use CLUN $00 and DLUN $00 
with the debugger commands NBH, NBO, NIOC, NIOP, NIOT, 
NPING, and NAB, and with the debugger system calls .NETRD, 
.NETWR, .NETFOPN, .NETFRD, .NETCFIG, and .NETCTRL.





H

H-1

HNetwork Communication
Status Codes

There are two types of network communication status codes, 
controller independent and controller (DEC21040 orDEC21140) 
dependent. 

The controller independent error codes are independent of the 
specified network interface. These errors are normally some type of 
operator error. The controller dependent error codes relate directly 
to the specified network interface. These errors occur at the driver 
level out to and including the network. 

The status word returned by the network system call routine flags 
an error condition if it is nonzero. The most significant byte of the 
status word reflects controller independent errors, and they are 
generated by the network trap routines. The least significant byte 
reflects controller dependent errors, and they are generated by the 
controller. The status word is shown below:  

The error codes are returned by driver, and will be placed in the 
controller dependent field of the command packet status word. All 
error codes must be non-zero, an error code of $00 signifies no 
error.    

15 8 7 0

Controller-Independent Controller-Dependent

Table H-1.  Controller-Independent Status Codes  

Code Description

$01 Invalid controller logical unit number
$02 Invalid device logical unit number
$03 Invalid command identiÞer
$04 Clock (RTC) is not running
$05 TFTP retry count exceeded
$06 BOOTP retry count exceeded



Network Communication Status Codes

H-2

H

$07 NVRAM write failure
$08 Illegal IPL load address
$09 User abort, break key depressed
$0A Time-out expired
$81 TFTP, File not found
$82 TFTP, Access violation
$83 TFTP, Disk full or allocation exceeded
$84 TFTP, Illegal TFTP operation
$85 TFTP, Unknown transfer ID
$86 TFTP, File already exists
$87 TFTP, No such user

Table H-2.  DEC21040/21140 Controller Status Codes  

Code Description

$01 Buffer not 16 byte aligned
$02 Shared memory buffer limit exceeded (software)
$03 Invalid data length (MIN <= LNGTH <= MAX)
$04 Initialization aborted
$05 transmit data aborted
$06 PCI base address not found
$07 No Ethernet port available on base-board
$10 System error
$11 Transmitter babble error
$12 Transmitter excessive collisions
$13 Transmitter process stopped
$14 Transmitter underßow error
$15 Transmitter late collision error
$16 Transmitter loss of carrier
$17 Transmitter 10baseT link fail error
$18 Transmitter no carrier

Table H-1.  Controller-Independent Status Codes  (Continued)

Code Description



Network Communication Status Codes

H-3

H

$19 Transmitter timeout on PHY
$20 Receiver CRC error
$21 Receiver overßow error
$22 Receiver framing error
$23 Receiver last descriptor ßag not set
$24 Receiver frame damaged by collision
$25 Receiver runt frame received
$28 Transmitter time out during a normal transmit
$29 Transmitter time out during a port setup
$30 SROM corrupt

Table H-2.  DEC21040/21140 Controller Status Codes  (Continued)

Code Description





GL-1

Glossary

Abbreviations, Acronyms, and Terms to Know
This glossary defines some of the abbreviations, acronyms, and key terms 
used in this document.

10Base-5 An Ethernet implementation in which the physical medium 
is a doubly shielded, 50-ohm coaxial cable capable of 
carrying data at 10 Mbps for a length of 500 meters (also 
referred to as thicknet). Also known as thick Ethernet.

10Base-2 An Ethernet implementation in which the physical medium 
is a single-shielded, 50-ohm RG58A/U coaxial cable capable 
of carrying data at 10 Mbps for a length of 185 meters (also 
referred to as AUI or thinnet). Also known as thin Ethernet.

10Base-T An Ethernet implementation in which the physical medium 
is an unshielded twisted pair (UTP) of wires capable of 
carrying data at 10 Mbps for a maximum distance of 185 
meters. Also known as twisted-pair Ethernet.

100Base-TX An Ethernet implementation in which the physical medium 
is an unshielded twisted pair (UTP) of wires capable of 
carrying data at 100 Mbps for a maximum distance of 100 
meters. Also known as fast Ethernet.

ACIA Asynchronous Communications Interface Adapter

AIX Advanced Interactive eXecutive (IBM version of UNIX)

architecture The main overall design in which each individual hardware 
component of the computer system is interrelated. The most 
common uses of this term are 8-bit, 16-bit, or 32-bit 
architectural design systems.

ASCII American Standard Code for Information Interchange. This 
is a 7-bit code used to encode alphanumeric information. In 
the IBM-compatible world, this is expanded to 8-bits to 
encode a total of 256 alphanumeric and control characters.



Glossary

GL-2

G
L
O
S
S
A
R
Y

ASIC Application-Specific Integrated Circuit

AUI Attachment Unit Interface

BBRAM Battery Backed-up Random Access Memory

bi-endian Having big-endian and little-endian byte ordering 
capability.

big-endian A byte-ordering method in memory where the address 
n of a word corresponds to the most significant byte. In 
an addressed memory word, the bytes are ordered (left 
to right) 0, 1, 2, 3, with 0 being the most significant byte.

BIOS Basic Input/Output System. This is the built-in 
program that controls the basic functions of 
communications between the processor and the I/O 
(peripherals) devices. Also referred to as ROM BIOS.

BitBLT Bit Boundary BLock Transfer. A type of graphics 
drawing routine that moves a rectangle of data from one 
area of display memory to another. The data specifically 
need not have any particular alignment.

BLT BLock Transfer

board The term more commonly used to refer to a PCB 
(printed circuit board). Basically, a flat board made of 
nonconducting material, such as plastic or fiberglass, on 
which chips and other electronic components are 
mounted. Also referred to as a circuit board or card.

bpi bits per inch

bps bits per second

bus The pathway used to communicate between the CPU, 
memory, and various input/output devices, including 
floppy and hard disk drives. Available in various 
widths (8-, 16-, and 32-bit), with accompanying 
increases in speed.

cache A high-speed memory that resides logically between a 
central processing unit (CPU) and the main memory. 
This temporary memory holds the data and/or 



Glossary

GL-3

G
L
O
S
S
A
R
Y

instructions that the CPU is most likely to use over and over 
again and avoids accessing the slower hard or floppy disk 
drive.

CAS Column Address Strobe. The clock signal used in dynamic 
RAMs to control the input of column addresses.

CD Compact Disc. A hard, round, flat portable storage unit that 
stores information digitally.

CD-ROM Compact Disk Read-Only Memory

CFM Cubic Feet per Minute

CHRP See Common Hardware Reference Platform (CHRP).

CHRP-compliant See Common Hardware Reference Platform (CHRP).

CHRP Spec See Common Hardware Reference Platform (CHRP).

CISC Complex-Instruction-Set Computer. A computer whose 
processor is designed to sequentially run variable-length 
instructions, many of which require several clock cycles, 
that perform complex tasks and thereby simplify 
programming.

CODEC COder/DECoder

Color Difference (CD) The signals of (R-Y) and (B-Y) without the luminance (-Y) 
signal. The Green signals (G-Y) can be extracted by these 
two signals.

Common Hardware Reference Platform (CHRP)
A specification published by Apple, IBM, and Motorola 
which defines the devices, interfaces, and data formats that 
make up a CHRP-compliant system using a PowerPC 
processor.

Composite Video Signal (CVS/CVBS)
Signal that carries video picture information for color, 
brightness and synchronizing signals for both horizontal 
and vertical scans. Sometimes referred to as ÒBaseband 
VideoÓ.

cpi characters per inch

cpl characters per line



Glossary

GL-4

G
L
O
S
S
A
R
Y

CPU Central Processing Unit. The master computer unit in a 
system.

DCE Data Circuit-terminating Equipment.

DLL Dynamic Link Library. A set of functions that are linked to 
the referencing program at the time it is loaded into 
memory.

DMA Direct Memory Access. A method by which a device may 
read or write to memory directly without processor 
intervention. DMA is typically used by block I/O devices.

DOS Disk Operating System

dpi dots per inch

DRAM Dynamic Random Access Memory. A memory technology 
that is characterized by extreme high density, low power, 
and low cost. It must be more or less continuously refreshed 
to avoid loss of data.

DTE Data Terminal Equipment.

ECC Error Correction Code

ECP Extended Capability Port

EEPROM Electrically Erasable Programmable Read-Only Memory. A 
memory storage device that can be written repeatedly with 
no special erasure fixture. EEPROMs do not lose their 
contents when they are powered down.

EIDE Enhanced Integrated Drive Electronics. An improved 
version of IDE, with faster data rates, 32-bit transactions, 
and DMA. Also known as Fast ATA-2.

EISA (bus) Extended Industry Standard Architecture (bus) (IBM). An 
architectural system using a 32-bit bus that allows data to be 
transferred between peripherals in 32-bit chunks instead of 
16-bit or 8-bit that most systems use. With the transfer of 
larger bits of information, the machine is able to perform 
much faster than the standard ISA bus system.

EPP Enhanced Parallel Port



Glossary

GL-5

G
L
O
S
S
A
R
Y

EPROM Erasable Programmable Read-Only Memory. A memory 
storage device that can be written once (per erasure cycle) 
and read many times.

ESCC Enhanced Serial Communication Controller

ESD Electro-Static Discharge/Damage

Ethernet A local area network standard that uses radio frequency 
signals carried by coaxial cables.

Falcon The DRAM controller chip developed by Motorola for the 
MVME2600 and MVME3600 series of boards. It is intended 
to be used in sets of two to provide the necessary interface 
between the Power PC60x bus and the 144-bit ECC DRAM 
(system memory array) and/or ROM/Flash.

fast Ethernet See 100Base-TX.

FDC Floppy Disk Controller

FDDI Fiber Distributed Data Interface. A network based on the 
use of optical-fiber cable to transmit data in non-return-to-
zero, invert-on-1s (NRZI) format at speeds up to 100 Mbps.

FIFO First-In, First-Out. A memory that can temporarily hold 
data so that the sending device can send data faster than the 
receiving device can accept it. The sending and receiving 
devices typically operate asynchronously.

firmware The program or specific software instructions that have 
been more or less permanently burned into an electronic 
component, such as a ROM (read-only memory) or an 
EPROM (erasable programmable read-only memory).

frame One complete television picture frame consists of 525 
horizontal lines with the NTSC system. One frame consists 
of two Fields.

graphics controller On EGA and VGA, a section of circuitry that can provide 
hardware assist for graphics drawing algorithms by 
performing logical functions on data written to display 
memory.

HAL Hardware Abstraction Layer. The lower level hardware 
interface module of the Windows NT operating system. It 
contains platform specific functionality.



Glossary

GL-6

G
L
O
S
S
A
R
Y

hardware A computing system is normally spoken of as having two 
major components: hardware and software. Hardware is 
the term used to describe any of the physical embodiments 
of a computer system, with emphasis on the electronic 
circuits (the computer) and electromechanical devices 
(peripherals) that make up the system.

HCT Hardware Conformance Test. A test used to ensure that 
both hardware and software conform to the Windows NT 
interface.

I/O Input/Output

IBC PCI/ISA Bridge Controller

IDC Insulation Displacement Connector

IDE Integrated Drive Electronics. A disk drive interface 
standard. Also known as ATA (Advanced Technology 
Attachment).

IEEE Institute of Electrical and Electronics Engineers

interlaced A graphics system in which the even scanlines are refreshed 
in one vertical cycle (field), and the odd scanlines are 
refreshed in another vertical cycle. The advantage is that the 
video bandwidth is roughly half that required for a non-
interlaced system of the same resolution. This results in less 
costly hardware. It also may make it possible to display a 
resolution that would otherwise be impossible on given 
hardware. The disadvantage of an interlaced system is 
flicker, especially when displaying objects that are only a 
few scanlines high.

IQ Signals Similar to the color difference signals (R-Y), (B-Y) but using 
different vector axis for encoding or decoding. Used by 
some USA TV and IC manufacturers for color decoding.

ISA (bus) Industry Standard Architecture (bus). The de facto 
standard system bus for IBM-compatible computers until 
the introduction of VESA and PCI. Used in the reference 
platform specification. (IBM)

ISASIO ISA Super Input/Output device



Glossary

GL-7

G
L
O
S
S
A
R
Y

ISDN Integrated Services Digital Network. A standard for 
digitally transmitting video, audio, and electronic data over 
public phone networks.

LAN Local Area Network

LED Light-Emitting Diode

LFM Linear Feet per Minute

little-endian A byte-ordering method in memory where the address n of 
a word corresponds to the least significant byte. In an 
addressed memory word, the bytes are ordered (left to 
right) 3, 2, 1, 0, with 3 being the most significant byte.

MBLT Multiplexed BLock Transfer

MCA (bus) Micro Channel Architecture

MCG Motorola Computer Group

MFM Modified Frequency Modulation

MIDI Musical Instrument Digital Interface. The standard format 
for recording, storing, and playing digital music.

MPC Multimedia Personal Computer

MPC105 The PowerPC-to-PCI bus bridge chip developed by 
Motorola for the Ultra 603/Ultra 604 system board. It 
provides the necessary interface between the MPC603/
MPC604 processor and the Boot ROM (secondary cache), 
the DRAM (system memory array), and the PCI bus.

MPC601 MotorolaÕs component designation for the PowerPC 601 
microprocessor.

MPC603 MotorolaÕs component designation for the PowerPC 603 
microprocessor.

MPC604 MotorolaÕs component designation for the PowerPC 604 
microprocessor.

MPC750 MotorolaÕs component designation for the PowerPC 750 
microprocessor.

MPIC Multi-Processor Interrupt Controller

MPU MicroProcessing Unit



Glossary

GL-8

G
L
O
S
S
A
R
Y

MTBF Mean Time Between Failures. A statistical term relating to 
reliability as expressed in power on hours (poh). It was 
originally developed for the military and can be calculated 
several different ways, yielding substantially different 
results. The specification is based on a large number of 
samplings in one place, running continuously, and the rate 
at which failure occurs. MTBF is not representative of how 
long a device, or any individual device is likely to last, nor 
is it a warranty, but rather, a gauge of the relative reliability 
of a family of products.

multisession The ability to record additional information, such as 
digitized photographs, on a CD-ROM after a prior 
recording session has ended.

non-interlaced A video system in which every pixel is refreshed during 
every vertical scan. A non-interlaced system is normally 
more expensive than an interlaced system of the same 
resolution, and is usually said to have a more pleasing 
appearance.

nonvolatile memory A memory in which the data content is maintained whether 
the power supply is connected or not.

NTSC National Television Standards Committee (USA)

NVRAM Non-Volatile Random Access Memory

OEM Original Equipment Manufacturer

OMPAC Over - Molded Pad Array Carrier

OS Operating System. The software that manages the 
computer resources, accesses files, and dispatches 
programs.

OTP One-Time Programmable

palette The range of colors available on the screen, not necessarily 
simultaneously. For VGA, this is either 16 or 256 
simultaneous colors out of 262,144.

parallel port A connector that can exchange data with an I/O device 
eight bits at a time. This port is more commonly used for the 
connection of a printer to a system.

PBC Peripheral Bus Controller



Glossary

GL-9

G
L
O
S
S
A
R
Y

PCI (local bus) Peripheral Component Interconnect (local bus) (Intel). A 
high-performance, 32-bit internal interconnect bus used for 
data transfer to peripheral controller components, such as 
those for audio, video, and graphics.

PCMCIA (bus) Personal Computer Memory Card International 
Association (bus). A standard external interconnect bus 
which allows peripherals adhering to the standard to be 
plugged in and used without further system modification.

PCR PCI Configuration Register
PDS Processor Direct Slot
PHB PCI Host Bridge

physical address A binary address that refers to the actual location of 
information stored in secondary storage.

PIB PCI-to-ISA Bridge

pixel An acronym for picture element, and is also called a pel. A 
pixel is the smallest addressable graphic on a display screen. 
In RGB systems, the color of a pixel is defined by some Red 
intensity, some Green intensity, and some Blue intensity.

PLL Phase-Locked Loop

PMC PCI Mezzanine Card

POWER Performance Optimized With Enhanced RISC architecture 
(IBM)

PowerPC™ The trademark used to describe the Performance Optimized 
With Enhanced RISC microprocessor architecture for 
Personal Computers developed by the IBM Corporation. 
PowerPC is superscalar, which means it can handle more 
than one instruction per clock cycle. Instructions can be sent 
simultaneously to three types of independent execution 
units (branch units, fixed-point units, and floating-point 
units), where they can execute concurrently, but finish out 
of order. PowerPC is used by Motorola, Inc. under license 
from IBM.

PowerPC 601™ The first implementation of the PowerPC family of 
microprocessors. This CPU incorporates a memory 
management unit with a 256-entry buffer and a 32KB 



Glossary

GL-10

G
L
O
S
S
A
R
Y

unified (instruction and data) cache. It provides a 64-bit 
data bus and a separate 32-bit address bus. PowerPC 601 is 
used by Motorola, Inc. under license from IBM.

PowerPC 603™ The second implementation of the PowerPC family of 
microprocessors. This CPU incorporates a memory 
management unit with a 64-entry buffer and an 8KB 
(instruction and data) cache. It provides a selectable 32-bit 
or 64-bit data bus and a separate 32-bit address bus. 
PowerPC 603 is used by Motorola, Inc. under license from 
IBM.

PowerPC 604™ The third implementation of the PowerPC family of 
microprocessors currently under development. PowerPC 
604 is used by Motorola, Inc. under license from IBM.

PowerPC Reference Platform (PRP)
A specification published by the IBM Power Personal 
Systems Division which defines the devices, interfaces, and 
data formats that make up a PRP-compliant system using a 
PowerPC processor.

PowerStack™ RISC PC (System Board)
A PowerPC-based computer board platform developed by 
the Motorola Computer Group. It supports MicrosoftÕs 
Windows NT and IBMÕs AIX operating systems.

PRP See PowerPC Reference Platform (PRP).

PRP-compliant See PowerPC Reference Platform (PRP).

PRP Spec See PowerPC Reference Platform (PRP).

PROM Programmable Read-Only Memory

PS/2 Personal System/2 (IBM)

QFP Quad Flat Package

RAM Random-Access Memory. The temporary memory that a 
computer uses to hold the instructions and data currently 
being worked with. All data in RAM is lost when the 
computer is turned off.

RAS Row Address Strobe. A clock signal used in dynamic RAMs 
to control the input of the row addresses.



Glossary

GL-11

G
L
O
S
S
A
R
Y

Raven The PowerPC-to-PCI local bus bridge chip developed by 
Motorola for the PowerPlus architecture (8+ boards). It 
provides the necessary interface between the PowerPC 60x, 
or 750x bus and the PCI bus, and acts as interrupt controller.

Reduced-Instruction-Set Computer (RISC)
A computer in which the processorÕs instruction set is 
limited to constant-length instructions that can usually be 
executed in a single clock cycle.

RFI Radio Frequency Interference

RGB The three separate color signals: Red, Green, and Blue. 
Used with color displays, an interface that uses these three 
color signals as opposed to an interface used with a 
monochrome display that requires only a single signal. Both 
digital and analog RGB interfaces exist.

RISC See Reduced Instruction Set Computer (RISC).

ROM Read-Only Memory

RTC Real-Time Clock

SBC Single Board Computer

SCSI Small Computer Systems Interface. An industry-standard 
high-speed interface primarily used for secondary storage. 
SCSI-1 provides up to 5 Mbps data transfer.

SCSI-2 (Fast/Wide) An improvement over plain SCSI; and includes command 
queuing. Fast SCSI provides 10 Mbps data transfer on an 8-
bit bus. Wide SCSI provides up to 40 Mbps data transfer on 
a 16- or 32-bit bus.

serial port A connector that can exchange data with an I/O device one 
bit at a time. It may operate synchronously or 
asynchronously, and may include start bits, stop bits, and/
or parity.

SIM Serial Interface Module

SIMM Single Inline Memory Module. A small circuit board with 
RAM chips (normally surface mounted) on it designed to fit 
into a standard slot.

SIO Super I/O controller



Glossary

GL-12

G
L
O
S
S
A
R
Y

SMP Symmetric MultiProcessing. A computer architecture in 
which tasks are distributed among two or more local 
processors.

SMT Surface Mount Technology. A method of mounting devices 
(such as integrated circuits, resistors, capacitors, and others) 
on a printed circuit board, characterized by not requiring 
mounting holes. Rather, the devices are soldered to pads on 
the printed circuit board. Surface-mount devices are 
typically smaller than the equivalent through-hole devices.

software A computing system is normally spoken of as having two 
major components: hardware and software. Software is the 
term used to describe any single program or group of 
programs, languages, operating procedures, and 
documentation of a computer system. Software is the real 
interface between the user and the computer.

SRAM Static Random Access Memory

SSBLT Source Synchronous BLock Transfer

standard(s) A set of detailed technical guidelines used as a means of 
establishing uniformity in an area of hardware or software 
development.

SVGA Super Video Graphics Array (IBM). An improved VGA 
monitor standard that provides at least 256 simultaneous 
colors and a screen resolution of 800 x 600 pixels.

Teletext One way broadcast of digital information. The digital 
information is injected in the broadcast TV signal, VBI, or 
full field, The transmission medium could be satellite, 
microwave, cable, etc. The display medium is a regular TV 
receiver.

thick Ethernet See 10base-5.

thin Ethernet See 10base-2.

twisted-pair Ethernet See 10Base-T.

UART Universal Asynchronous Receiver/Transmitter

Universe ASIC developed by Tundra in consultation with Motorola, 
that provides the complete interface between the PCI bus 
and the 64-bit VMEbus.



Glossary

GL-13

G
L
O
S
S
A
R
Y

UV UltraViolet

UVGA Ultra Video Graphics Array. An improved VGA monitor 
standard that provides at least 256 simultaneous colors and 
a screen resolution of 1024 x 768 pixels.

Vertical Blanking Interval (VBI)
The time it takes the beam to fly back to the top of the screen 
in order to retrace the opposite field (odd or even). VBI is in 
the order of 20 TV lines. Teletext information is transmitted 
over 4 of these lines (lines 14-17).

VESA (bus) Video Electronics Standards Association (or VL bus). An 
internal interconnect standard for transferring video 
information to a computer display system.

VGA Video Graphics Array (IBM). The third and most common 
monitor standard used today. It provides up to 256 
simultaneous colors and a screen resolution of 640 x 480 
pixels.

virtual address A binary address issued by a CPU that indirectly refers to 
the location of information in primary memory, such as 
main memory. When data is copied from disk to main 
memory, the physical address is changed to the virtual 
address.

VL bus See VESA Local bus (VL bus).

VMEchip2 MCG second generation VMEbus interface ASIC (Motorola)

VME2PCI MCG ASIC that interfaces between the PCI bus and the 
VMEchip2 device.

volatile memory A memory in which the data content is lost when the power 
supply is disconnected.

VRAM Video (Dynamic) Random Access Memory. Memory chips 
with two ports, one used for random accesses and the other 
capable of serial accesses. Once the serial port has been 
initialized (with a transfer cycle), it can operate 
independently of the random port. This frees the random 
port for CPU accesses. The result of adding the serial port is 
a significantly reduced amount of interference from screen 
refresh. VRAMs cost more per bit than DRAMs.



Glossary

GL-14

G
L
O
S
S
A
R
Y

Windows NT™ The trademark representing Windows New Technology, a 
computer operating system developed by the Microsoft 
Corporation.

XGA EXtended Graphics Array. An improved IBM VGA monitor 
standard that provides at least 256 simultaneous colors and 
a screen resolution of 1024 x 768 pixels.

Y Signal Luminance. This determines the brightness of each spot 
(pixel) on a CRT screen either color or B/W systems, but not 
the color.



IN-1

Index

Symbols
.BINDEC routine 5-63
.BRD_ID routine 5-69, B-3
.CHANGEV routine 5-64
.CHK_SUM routine 5-68
.CHKBRK routine 5-13
.DELAY routine 5-55
.DIAGFCN routine 5-79
.DIVU32 routine 5-67
.DSKCFIG routine 5-17
.DSKCTRL routine 5-30
.DSKFMT routine 5-27
.DSKRD routine 5-14
.DSKWR routine 5-14
.ENVIRON routine 5-72
.ERASLN routine 5-51
.FORKMPU function 5-93
.FORKMPUR function 5-94
.IDLEMPU function 5-99
.INCHR routine 5-7
.INLN routine 5-9
.INSTAT routine 5-8
.IOCONFIG routine 5-108
.IODELETE routine 5-109
.IOINFORM routine 5-106
.IOINQ routine 5-99
.MULU32 routine 5-66
.NETCFIG routine 5-34
.NETCTRL routine 5-44
.NETFOPN routine 5-40
.NETFRD routine 5-42
.NETRD routine 5-32
.NETWR routine 5-32

.OUTCHR routine 5-47

.OUTLN routine 5-48

.OUTSTR routine 5-48

.PCRLF routine 5-50

.PFLASH function 5-76

.READLN routine 5-12

.READSTR routine 5-10

.REDIR routine 5-60

.REDIR_I routine 5-61

.REDIR_O routine 5-61

.RETURN routine 2-1, 5-62

.RTC_DSP routine 5-58

.RTC_DT routine 5-57

.RTC_RD routine 5-59

.RTC_TM routine 5-56

.SIOPEPS routine 5-91

.SNDBRK routine 5-54

.STRCMP routine 5-65

.SYMBOLTA routine 5-111

.SYMBOLTD routine 5-113

.WRITD routine 5-52

.WRITDLN routine 5-52

.WRITE routine 5-49

.WRITELN routine 5-49

A
abbreviations, acronyms, and terms to

know GL-1
access disk 3-93
access tape 3-93
ADDR argument 2-4
address modes 4-8
address modifier 5-16, 5-18, 5-28, 5-31



Index

IN-2

I
N
D
E
X

Address Resolution Protocol (ARP) 1-30
address sizes 1-33
alternate boot device B-1
arguments 2-2

ADDR 2-4
EXP 2-2
PORT 2-6

ARP 1-30
AS command 3-4, 4-11
assembler 3-130, 4-1, 4-2, 4-11
assembler error messages 4-14
assembly language 1-2, 4-1
assert SYSFAIL* 1-22
assign

port 3-178, 3-181
serial port as console 3-220

assign value to variable 5-64
ATA (hard disks/CD-ROM drives) F-2
ATA/ATAPI controller-dependent er-

rors F-7
ATA/ATAPI firmware status codes F-6
ATAPI (CD-ROM drives) F-2
attach

printer to a port 3-168
symbol table to debugger 3-211,

5-111
attribute mask (IOSATM, IOSEATM)

5-22
attribute word 5-22
attribute word (IOSATW, IOSEATW)

5-23
Auto Boot 1-13

B
battery

power save mode 3-187
baud rate B-6
BC command 3-5
BF command 3-7
BI command 3-10
big-endian byte ordering 1-34
Binary Coded Decimal (BCD) 5-63

binary number 5-63
block of memory move 3-12, 3-40
block of memory search 3-17
block of memory verify 3-22
blocks 1-23

retrieve 5-42
BM command 3-12
board ID packet 5-69
board identification/information B-3
board information block 3-29
boot

network 3-142
boot device B-1
boot halt

network 3-140
BOOTP 1-30, 3-143
bootstrap operating system 1-25, 3-170
Bootstrap Protocol (BOOTP) 1-30, 3-143
BR command 3-15
branch commands 4-13
break 5-54

check for 5-13
breakpoint

delete 3-15
insert 3-15
temporary 3-79, 3-224

BS command 3-17
BV command 3-22
byte 1-33
byte ordering 1-34

C
CFGA 5-19
change configurable parameters (IOT

command) 1-25
change register 3-200
characters

output 5-47
check for break 5-13
check function 5-79



IN-3

I
N
D
E
X

checksum
CS command 3-33
generate 5-68

clock
real-time 5-58

clock speed calculation 1-22
clock, real-time 5-57
CLUN 1-24, 3-87, 3-90, 3-101, 3-146, 5-15,

5-18, 5-19, 5-27, 5-30
CM command 3-25
CNFG command 3-29
code execution 3-76, 3-79
code execution. 3-60
cold reset 3-197
command arguments 2-2
command entry

control characters 2-7
command options 2-6
command packet 3-146, 5-17, 5-27, 5-30

send 3-87
commands 3-1, 3-82

disk I/O 1-24
communicate with host computer 3-222
compare strings 5-65
compares memory contents 3-5
concurrent mode 3-25, B-7
confidence tests 1-5
Configuration Area Block (CFGA) 5-19
configure

board information block 3-29
disk 5-17
disk controller 3-99
network parameters 5-34
operational parameters 3-53
port 3-178, 3-180, 5-108

connect
console port to a port 3-222

console
assign serial port 3-220

console port
connect to a port 3-222

console serial port 3-222

context switching 2-11
control

return to PPCBug 5-62
control characters

command input and output 2-7
control routines

implement 5-44
controller configuration 1-27
controller device documents A-3
Controller Logical Unit Number (CLUN)

1-24, 3-87, 3-90, 3-101, 3-146,
5-15, 5-18, 5-19, 5-27, 5-30

controller parameters
default 1-27

controller-independent status codes F-3,
H-1

controllers
ethernet G-1
network G-1

conversation mode B-8
CS command 3-33
CSAR command 3-35
CSAW command 3-36

D
data conversion 3-37
data sizes 1-33
date

display 3-221, 5-58
initialize 5-57
set 3-208

DC command 3-37
debug port 5-1
debugger commands 3-1, 3-82
debugger directory 1-12, 3-207
debugger error messages C-1
debugging modular code 3-74
DEC21040 controller status codes H-2
default configuration 1-27
default controller parameters 1-27
default device parameters 1-27
default input port 5-1



Index

IN-4

I
N
D
E
X

default output port 5-1
define macros 3-114
delay timer 5-55
delete I/O port 5-109
delete macros 3-114
detach

port 3-168, 3-178
symbol table 3-212, 5-113

device descriptor packet 5-19
device descriptor table 1-24, 3-90, 3-100
Device Logical Unit Number (DLUN)

1-24, 3-87, 3-90, 3-101, 3-146,
5-15, 5-18, 5-19, 5-27, 5-30

device parameters
default 1-27

device probe 1-24
diagnostic directory 1-12, 3-207
diagnostic function 5-79
diagnostics

return from System Menu B-2
Direct Memory Access (DMA) 3-41
directives 4-2
directories 1-12
disable macro listing 3-119
disable ROMboot 3-188
disassembled source line 4-4
disassembler 3-48, 3-130, 4-1, 4-4, 4-11
disk

configure 5-17
read/write 5-14
status codes F-1

disk access 3-93
disk configuration 3-99
disk configure routine 5-17
disk control 5-30
disk control routine 5-30
disk controller 1-26, E-1
disk format 3-93, 5-27
disk format routine 5-27
disk I/O 1-24

debugger commands 1-24
error codes 1-27

support 1-23
system calls 1-26

disk I/O control 3-87
disk read 3-93
disk transfer 1-23
disk write 3-93
display

date 3-221
time 3-221

display host's hardware subsystems
3-231

display macros 3-114
display register 3-200
display register state 3-190
display symbol table 3-214
display system test errors B-2
display time 5-58
divide integers 5-67
DLUN 1-24, 3-87, 3-90, 3-101, 3-146, 5-15,

5-18, 5-19, 5-27, 5-30
DMA 3-41
DMA command 3-40
double precision 2-14
double-button reset 1-20
download data 3-109
download S-records 3-109
DS command 3-48, 4-13
DU command 2-8, 3-49
dump memory to tape B-2
dump S-records 3-49

E
ECHO command 3-51
edit macros 3-117
enable macro listing 3-119
enable ROMboot 3-188
entering and debugging programs 2-8
ENV command 3-53
environment

set 3-53
environment parameters

read/write 5-72



IN-5

I
N
D
E
X

erase line 5-51
error codes

disk I/O 1-27
disk system calls F-1
network I/O 1-31
network system calls H-1
SCSI F-1

error correction code (ECC) 3-103
error messages C-1

assembler 4-14
errors

system test B-2
errors, controller-dependent

ATA/ATAPI F-7
Ethernet controller 1-28, G-1
Ethernet driver 1-28
Ethernet network

booting 1-18, 1-28
Ethernet packets 1-28
exception handler 5-68
exception handler semaphore 3-206
exception vectors 2-10
execute debugger 3-205
execute instruction 3-216
execute program 3-76
EXP argument 2-2

F
file

open for read 5-40
file blocks

retrieve 5-42
file number B-4
file zero structure B-3
fill memory 3-7
fixed-length buffer 5-12
flag byte 5-15, 5-28
FLASH image 1-3, 3-184
FLASH memory 1-2, 3-183, 3-184

programming with .PFLASH func-
tion 5-76

floating point instruction 2-13

floppy disk
configuration E-2
IOT command parameters E-2

fork
idle MPU 5-94
MPU 5-93

fork an MPU 5-93
FORK command 3-58
fork idle MPU 5-94
Fork Idle MPU at Address 3-58
Fork Idle MPU with Registers 3-59
fork MPU 5-93
FORKWR command 3-59
format

disk 3-93, 5-27
S-records D-1
tape 3-93

function
diagnostic 5-79

G
GD command 2-1, 2-11, 3-60
generate checksum 5-68
get files 3-152
get from host 5-32
GEVBOOT command 3-62
GEVDEL command 3-68
GEVDUMP command 3-69
GEVEDIT command 3-71
GEVINIT command 3-72
GEVs (Global Environment Variables)

3-63
GEVSHOW command 3-73
Global Environment Variables (GEVs)

3-63
GN command 2-11, 3-74
GO command 1-31, 2-1, 2-11, 3-76, 3-79,

3-110
go to temporary breakpoint 3-79
GT command 2-1, 2-11, 3-79



Index

IN-6

I
N
D
E
X

H
half-word 1-33
hardcopy mode 2-7, 3-130, 5-51, 5-104
HE command 3-82
help 3-82
host

read/write 5-32

I
I/O

disk 1-23
network 1-28

I/O control
disk 3-87
network 3-146

I/O control structure 5-103
I/O error codes

disk 1-27
network 1-31

I/O function 5-60
I/O inquiry 1-24, 3-90
I/O physical

network 3-152
I/O port change 5-106
I/O, disk

debugger commands 1-24
system calls 1-26

I/O, redirect 5-60
idle

processor 5-93
IDLE command 3-86
Idle Master MPU 3-86
Idle MPU Register Display/Modify/Set

3-107
idle MPU with registers, fork at address

3-59
idle MPU, fork at address 3-58
idle processor 3-58, 3-59, 3-86, 3-107,

3-205
implement special control routines 5-44
initialize date 5-57
initialize parity 3-10

initialize RTC 5-56, 5-57
initiate service call 3-196, B-2
input

redirect 5-61
input character routine 5-7
input line routine 5-9
input port 5-1
input serial port status 5-8
Inquiry SCSI command 1-24
instruction execution 3-216
instruction fields 4-6
instruction mnemonics 4-5
integers

divide 5-67
multiply 5-66

Internet Protocol (IP) 1-28
introduction F-1
invoking system calls 5-1
IOC command 1-25, 1-27, 3-87
IOI command 1-24, 3-90
IOP command 1-25, 3-93, 3-99
IOSATM 5-22
IOSATW 5-23
IOSEATM 5-22
IOSEATW 5-23
IOSEPRM 5-22
IOSPRM 5-22
IOT command 1-23, 1-25, 3-99, E-2
IP (Internet Protocol) 1-28
IRD command 3-107
IRM command 3-107
IRS command 3-107

L
LAN coprocessor 1-28
LED/serial startup diagnostic codes 1-7,

3-57
line

erase 5-51
output 5-48, 5-49
read 5-12

little-endian byte ordering 1-34



IN-7

I
N
D
E
X

LO command 2-8, 3-108
load control program 3-140
load FLASH memory 3-184
load macros 3-120
load operating system 3-140
load S-records 3-108, 3-109
logical blocks 1-23
loop

read 3-199

M
MA command 3-114
macros 3-119

define 3-114
delete 3-114
edit 3-117
load 3-120
save 3-122

MAE command 3-114, 3-117
main processor registers 4-5
MAL command 3-119
manual modem connection B-9
MAR command 3-120
MAW command 3-122
MD command 2-13, 3-124, 4-13
MDS command 3-124
memory 3-129

dump to tape B-2
write 3-136

Memory Display 3-124
memory fill 3-7
Memory Management Unit (MMU) 2-9
memory map diagnostic 3-133
memory modify 3-129
memory move 3-12
Memory Requirements 2-9
memory requirements 1-3, 2-9
memory search 3-17
memory set 3-135
memory status 5-83
memory verify 3-22
MENU command 3-128, B-1

menu, system B-1
MESS command B-7
messages C-1
microprocessor documents A-3
MM command 2-13, 3-129, 4-11
MMD command 3-133
MMU 2-9
mnemonic directives 4-2
mnemonics

assembly language 4-2
Mode Sense SCSI command 1-24
modems B-5

manual connection B-9
modular code

debugging 3-74
MPAR 1-32
MPCR 1-31
MPU 5-94

fork idle 5-94
fork multiple 5-93
idle 5-99

MPU and CPU registers 2-10
MPU clock speed

calculation 1-22
MPU Execution/Status 3-205
MPU with registers, idle, fork at address

3-59
MPU, idle, fork at address 3-58
MS command 3-135
multiply integers 5-66
Multiprocessor Address Register

(MPAR) 1-32
Multiprocessor Control Register (MPCR)

1-31
multiprocessor support 1-31
MW command 3-136

N
NAB command 3-138
NAP command 3-139
NAP MPU 3-139
NBH command 3-140



Index

IN-8

I
N
D
E
X

NBO command 3-138, 3-142
negate SYSFAIL* 1-22
network auto boot 1-18, 3-138
network boot control module 1-30
Network Boot Operating System 3-142
Network Boot Operating System and

Halt 3-140
network communication status codes

H-1
network configuration 3-156
network control routine 5-44
network controllers G-1
network file open 5-40
network file retrieve 5-42
network I/O 1-28, 3-146
network I/O error codes 1-31
network I/O physical 3-152
network I/O teach 3-156
network parameters

configure 5-34
network ping 3-163
network read/write 5-32
next instruction 3-74
NIOC command 3-146
NIOP command 3-152
NIOT command 3-156
no concurrent mode 3-25
NOBR command 3-15
NOCM command 3-25
NOMA command 3-114
NOMAL command 3-119
Non-Volatile RAM (NVRAM) 3-29, 3-53
NOPA command 3-168
NOPF command 3-178
NORB command 3-188
NOSYM command 3-212
NPING command 3-163
NVRAM 3-29, 3-53

O
OF command 3-165
offset registers 3-165

one line assembler 3-4
One-Line Assembler/Disassembler 

3-130, 4-1
open file for read 5-40
operand field 4-4
operating environment 2-9
operating system

block size 5-23
booting 1-25
network boot 3-142
network boot and halt 3-140

operation codes 4-2
operation field 4-4
operational parameters

configure 3-53
view 3-53

operators 4-8
other messages C-2
output

line 5-48, 5-49
redirect 5-61
string 5-48, 5-49
string with data 5-52

output characters 5-47
output port 5-1
output test status report 5-80

P
PA command 3-168, 4-13
packets 3-146
parameter mask (IOSPRM, IOSEPRM)

5-22
parse value 5-64
PBOOT command 1-25, 3-99, 3-100, 3-170
PCI configuration space READ access

3-35
PCI configuration space WRITE access

3-36
PF command 3-178
PFLASH command 3-183
physical I/O 3-93
physical layer manager 1-28



IN-9

I
N
D
E
X

pointer/count format 5-2
pointer/pointer format 5-2
port

assign 3-178, 3-181
attach printer 3-168
change 5-106
configure 3-178, 3-180, 5-108
connecting 3-222
delete 5-109
detach 3-178, 3-182
detach printer 3-168
inquire 5-100
number 5-106, 5-108, 5-109

PORT argument 2-6
port control structure 5-100, 5-107, 5-109
port status

input 5-8
power save mode 3-187
print 5-50
print line feed 5-50
printer

attach to a port 3-168
detach from port 3-168

probe a network 3-163
processor, idling 3-86
program FLASH memory 3-183, 5-76
program listings 4-13
programming 5-76
prompt 1-12
PS command 3-187
pseudo-registers 4-5
put files 3-152

R
RARP 1-30, 3-143
RARP server 1-30
RB command 3-188
RCC command B-7
RD command 3-190
read

blocks (IOP command) 1-25
disk 3-93, 5-14

environment parameters 5-72
from host 5-32
line 5-12
loop 3-199
RTC registers 5-59
string 5-10
tape 3-93

real time clock (RTC) 5-57, 5-59
start 3-208
stop 3-187

redirect I/O 5-60, 5-61
register display, idle MPU 3-107
register modify 3-200
register set 3-203
register state

display 3-190
registers

main processor 4-5
RTC 5-59

related documentation A-1
related specifications A-9
REMOTE command 3-196
remote processor 1-31
remote start 1-31
remote system B-7
RESET command 3-197
RESET exception 3-197
retrieve file blocks 5-42
retrieve SCSI pointers 5-91
return ID pointer 5-69
return to PPCBug 5-62
Reverse Address Resolution Protocol

(RARP) 1-30
revision display 3-231
RL command 3-199
RM command 3-200
ROM code B-8
ROMboot 1-14

disable 3-188
enable 3-188

ROMboot routine 1-16
RS command 3-203



Index

IN-10

I
N
D
E
X

RTC 5-58, 5-59
RTC chip

start 3-208
stop 3-187

RTC power save mode 3-187
RTC time initialization 5-56
RUN command 3-205

S
save macros 3-122
SC instruction 2-9, 4-10, 5-1
scientific notation 2-15
SCSI bus

status codes F-4
SCSI command F-1
SCSI commands

Inquiry 1-24
Mode Sense 1-24

SCSI error codes F-1
SCSI firmware

status codes F-4
SCSI pointers

retrieve 5-91
SD command 1-12, 3-207
search symbol table 3-214
sectors 1-23
select

alternate boot device B-1
self tests 1-5
selftest name list 5-85
send break 5-54
send command packet 3-87
send command packets (IOC command)

1-25
send to host 5-32
sense key F-1
serial port

assign as console 3-220
serial port status

input 5-8
service call

initiate 3-196, B-2

phone number B-6
service call function B-5
set

breakpoint 3-79
date 3-208
environment 3-53
temporary breakpoint 3-224
time 3-208

SET command 3-208
set-up network configuration 3-156
single precision 2-14
single processor operation 1-31
SIOP

status codes F-4
slave map decoders 3-54
Small Computer System Interface (SCSI)

5-69
source code 4-11
source line 4-3, 4-12
source program 4-3
source programs 4-11
S-records 3-49, 3-108, 3-109

creating D-4
fields D-1
format D-1
types D-2
verify 3-227

SROM command 3-209
SROM Examine/Modify 3-209
start code execution 3-60
status codes

ATA/ATAPI firmware F-6
controller-independent F-3, H-1
DEC21040 controller H-2
disk F-1
network communication H-1
SCSI bus F-4
SCSI firmware F-4
SIOP F-4

status of MPU 3-205
status word H-1



IN-11

I
N
D
E
X

string
output 5-48, 5-49

string formats 5-2
string with data

output 5-52
strings

compare 5-65
switch directories 3-207
SYM command 3-211
symbol base address 5-111
symbol table

attach 5-111
attach to the debugger 3-211, 5-111
detach 3-212, 5-113
display 3-214
search 3-214

SYMS command 3-214
SYSCALL directive 4-2, 4-10
SYSFAIL* 1-22
system call 4-2
system call directive 4-10
System Call handler 2-9, 5-1
System Call instruction 2-9, 5-1
System Call routines 5-2
system calls 2-8, 5-1

disk I/O 1-26
disk, error codes F-1
network, error codes H-1

system console 3-26
System Fail (SYSFAIL*) 1-14
system ID number B-6
System Menu B-1

return to diagnostics B-2
system mode 3-128
system start-up B-1
system test errors B-2
systems with wide SCSI drives running

AIX 3-56

T
T command 2-11, 3-216
TA command 3-220

tape
memory dump B-2

tape access 3-93
tape controller E-1
tape format 3-93
tape read 3-93
tape write 3-93
target IP 3-60
temporary breakpoint 3-79, 3-224
terminal attach 3-220
terminal mode operation B-11
TFTP 1-30, 3-143, 3-152
time

display 3-221
set 3-208

TIME command 3-221
time display 5-58
time initialize 5-56
timer delay 5-55
TM command 3-222
trace 3-216
trace to temporary breakpoint 3-224
transparent mode 3-222
Trivial File Transfer Protocol (TFTP) 1-30
TT command 2-11, 3-224

U
UDP 1-28
UDS modem B-5
User Datagram Protocol (UDP) 1-28
user packets 1-26

V
variable-length buffer 5-10
VE command 3-227
VER command 3-231
verify S-records 3-227
version display 3-231
VMEbus address modifier 5-16, 5-18,

5-28, 5-31



Index

IN-12

I
N
D
E
X

W
warm reset 3-197
WL command 3-235
word 1-33
WORD directive 4-2, 4-9
write

blocks (IOP command) 1-25
data 3-136
data loop 3-235
disk 3-93, 5-14
environment parameters 5-72
memory 3-136
tape 3-93
to host 5-32

write data to memory 3-135
write loop 3-235


	Contents
	List of Tables
	List of Figures
	Part 1
	General Information
	PPCBug Overview
	Comparison with other Motorola Bugs
	PPCBug Implementation
	Memory Requirements
	Size and Address Requirements for NVRAM

	Set-up
	Start-up
	MPU, Hardware, and Firmware Initialization
	LED/Serial Startup Diagnostic Codes


	Running the Diagnostics and Debugger
	Auto Boot
	ROMboot
	Sample ROMboot Routine

	Network Auto Boot
	Restarting the System
	Reset
	Abort
	Break
	Board Failure
	SYSFAIL* Assertion and Negation (MVME230x, MVME260...

	MPU Clock Speed Calculation

	Disk I/O Support
	Blocks and Sectors
	Device Probe
	Disk I/O via Debugger Commands
	IOI (Input/Output Inquiry)
	IOP (Physical I/O to Disk)
	IOT (I/O Configure)
	IOC (I/O Control)
	PBOOT (Bootstrap Operating System)

	Disk I/O via Debugger System Calls
	Default PPCBug Controller and Device Parameters
	Disk I/O Error Codes

	Network I/O Support��
	Physical Layer Manager Ethernet Driver
	UDP and IP Modules
	RARP and ARP Modules
	BOOTP Module
	TFTP Module
	Network Boot Control Module
	Network I/O Error Codes

	Multiprocessor Support (Remote Start)
	Multiprocessor Control Register (MPCR) Method

	Data and Address Sizes
	Byte Ordering

	Using the Debugger
	Entering Commands
	Command Syntax
	Command Arguments
	EXP
	ADDR
	PORT

	Command Options
	Control Characters

	Entering and Debugging Programs
	System Call Routines in User Programs
	Preserving the Operating Environment
	Memory Requirements
	Exception Vectors
	MPU Registers
	MPU Register SPR275
	MPU Registers SPR272-SPR274


	Context Switching
	Floating Point Support
	Single Precision Real
	Double Precision Real
	Scientific Notation


	Debugger Commands
	Introduction
	Debugger Commands
	AS - One-Line Assembler
	BC - Block of Memory Compare
	BF - Block of Memory Fill
	BI - Block of Memory Initialize
	BM - Block of Memory Move
	BR - Breakpoint Insert�� NOBR - Breakpoint Delete
	BS - Block of Memory Search
	BV - Block of Memory Verify
	CM - Concurrent Mode�� NOCM - No Concurrent Mode
	CNFG - Configure Board Information Block
	CS - Checksum
	CSAR - PCI Configuration Space READ Access
	CSAW - PCI Configuration Space WRITE Access
	DC - Data Conversion
	DMA - Block of Memory Move
	DS - One-Line Disassembler
	DU - Dump S-Records
	ECHO - Echo String
	ENV - Set Environment
	FORK - Fork Idle MPU at Address
	FORKWR - Fork Idle MPU with Registers
	GD - Go Direct (Ignore Breakpoints)
	GEVBOOT - Global Environment Variable Boot
	GEVDEL - Global Environment Variable Delete
	GEVDUMP - Global Environment Variable(s) Dump
	GEVEDIT - Global Environment Variable Edit
	GEVINIT - Global Environment Variable Initializati...
	GEVSHOW - Global Environment Variable(s) Display
	GN - Go to Next Instruction
	GO - Go Execute User Program
	GT - Go to Temporary Breakpoint
	HE - Help
	IDLE - Idle Master MPU
	IOC - I/O Control for Disk
	IOI - I/O Inquiry
	IOP - I/O Physical (Direct Disk Access)
	IOT - I/O Configure Disk Controller
	IRD, IRM, IRS - Idle MPU Register Display/Modify/S...
	LO - Load S-Records from Host
	MA - Macro Define/Display�� NOMA - Macro Delete
	MAE - Macro Edit
	MAL - Enable Macro Listing�� NOMAL - Disable Macro...
	MAR - Load Macros
	MAW - Save Macros
	MD, MDS - Memory Display
	MENU - System Menu
	MM - Memory Modify
	MMD - Memory Map Diagnostic
	MS - Memory Set
	MW - Memory Write
	NAB - Network Auto Boot
	NAP - NAP MPU
	NBH - Network Boot Operating System, Halt
	NBO - Network Boot Operating System
	NIOC - Network I/O Control
	NIOP - Network I/O Physical
	NIOT - Network I/O Teach (Configuration)
	NPING - Network Ping
	OF - Offset Registers Display/Modify
	PA - Printer Attach�� NOPA - Printer Detach
	PBOOT - Bootstrap Operating System
	PF - Port Format�� NOPF - Port Detach
	PFLASH - Program FLASH Memory
	PS - Put RTC into Power Save Mode
	RB - ROMboot Enable�� NORB - ROMboot Disable
	RD - Register Display
	REMOTE - Remote
	RESET - Cold/Warm Reset
	RL - Read Loop
	RM - Register Modify
	RS - Register Set
	RUN - MPU Execution/Status
	SD - Switch Directories
	SET - Set Time and Date
	SROM - SROM Examine/Modify
	SYM - Symbol Table Attach�� NOSYM - Symbol Table D...
	SYMS - Symbol Table Display/Search
	T - Trace
	TA - Terminal Attach
	TIME - Display Time and Date
	TM - Transparent Mode
	TT - Trace to Temporary Breakpoint
	VE - Verify S-Records Against Memory
	VER - Revision/Version Display
	WL - Write Loop



	Part 2
	One-Line Assembler/ Disassembler
	Introduction
	PowerPC Assembly Language
	Machine-Instruction Operation Codes
	Directives

	Comparison with the Standard Assembler
	Source Program Coding
	Source Line Format
	Operation Field
	Operand Field
	Disassembled Source Line
	Mnemonics and Delimiters
	Instructions
	Character Set

	Addressing Modes
	WORD Define Constant Directive
	SYSCALL System Call Directive

	Entering and Modifying Source Programs
	Invoking the Assembler/Disassembler
	Entering a Source Line
	Entering Branch Operands
	Assembler Output/Program Listings
	Assembler Error Messages


	System Calls
	Introduction
	Invoking System Calls
	String Formats for I/O

	System Call Routines
	 .INCHR
	 .INSTAT
	 .INLN
	 .READSTR
	 .READLN
	 .CHKBRK
	 .DSKRD�� .DSKWR
	 .DSKCFIG
	Configuration Area Block CFGA Fields

	 .DSKFMT
	.DSKCTRL
	 .NETRD�� .NETWR
	  .NETCFIG
	 .NETFOPN
	 .NETFRD
	 .NETCTRL
	 .OUTCHR
	 .OUTSTR�� .OUTLN
	 .WRITE�� .WRITELN
	 .PCRLF
	 .ERASLN
	 .WRITD�� .WRITDLN
	 .SNDBRK
	 .DELAY
	 .RTC_TM
	 .RTC_DT
	 .RTC_DSP
	 .RTC_RD
	 .REDIR
	 .REDIR_I�� .REDIR_O
	 .RETURN
	 .BINDEC
	 .CHANGEV
	 .STRCMP
	 .MULU32
	 .DIVU32
	 .CHK_SUM
	 .BRD_ID
	 .ENVIRON
	   .PFLASH Function
	.DIAGFCN
	  .SIOPEPS
	 .FORKMPU Function
	 .FORKMPUR Function
	  .IDLEMPU Function
	.IOINQ
	 .IOINFORM
	 .IOCONFIG
	 .IODELETE
	 .SYMBOLTA
	 .SYMBOLTD


	Related Documentation
	Motorola Computer Group Documents
	Microprocessor and Controller Documents
	Related Specifications

	System Menu
	Introduction
	Menu Items
	Continue System Start-up
	Select Alternate Boot Device
	Go to System Diagnostics
	Initiate Service Call
	Display System Test Errors
	Dump Memory to Tape

	Using the Service Call Function
	Operation
	Sending Messages
	Concurrent Mode
	Terminating the Conversation and Concurrent Modes

	Manual Connection
	Terminal Connection


	PPCBug Messages
	Introduction
	Error Messages
	Other Messages

	S-Record Format
	Introduction
	S-Record Content
	S-Record Types
	Creating S-Records
	Example

	Disk and Tape Controllers
	Disk and Tape Support
	Floppy Drive Configuration Parameters

	Disk Status Codes
	Introduction
	SCSI
	ATA (Hard Disks/CD-ROM Drives)
	ATAPI (CD-ROM Drives)

	Controller-Independent Status Codes
	SCSI Firmware Status Codes
	ATA/ATAPI Firmware Status Codes

	Network Controller Devices
	Network Communication Status Codes

	Glossary
	Index

